Joint EuroCC/SimEA seminar series

Polymer/graphene-based nanocomposites: a microscopic view through the magnifying glass of molecular dynamics simulations

K. Karatasos September 7, 2021

Aristotle University of Thessaloniki, Chemical Engineering Department

2018, 10 (31), 14788-14811

Oil/water separation

Parameters that can affect the polymer composite properties (thermal, mechanical, electrical)

Time

4/30

averages

GR/PEG: Effects of polymer size (unentangled)

- Constant (high) graphene loading
- No specific interactions

GO/PAA: Effects of filler's loading (still at the high loading limit).

- Constant polymer size (unentangled).
- Presence of specific interactions.

PAA or PS / GO or GR: Effects of the flakes' nanoroughness and the nature of the interactions

- Constant polymer size (unentangled)
- Low GR, GO loading
- Presence/absence of specific interactions

PAA/GO: Effects of the filler's size, conformations at the interface, effects in dynamics.

- Constant polymer size (unentangled)
- Low GO loading

Graphene/PEG: non specific interactions. Effects of polymer size at constant loading

System notation	Number of PEG monomers per chain	Number of PEG chains	Number of Graphene Sheets	Weight fraction of Graphene
20peo40g	40	20	20	44%
40peo20g	20	40	20	45%
20peo40	40	20		
40peo20	20	40		

peo40~1764 g/mol (below entanglement) peo20~855 g/mol High loading limit

	Experiment			Experiment
	Niedzwiedz	Estimation	Estimation	Niedzwiedz
	et al.			et al.
M _w (g/mol)	890	855.014	1764.118	2100
T _g (°C)	- 83	≃ - 80	≃ - 76	- 74
T _m (°C)	33			48

Niedzwiedz, K., et al., Macromolecules, 2008. 41: p. 4866-4872

Roussou, R.-E.; Karatasos, K. Materials & Design 2016, 97, 163-174

H

 $15 \text{ Å} \times 15 \text{ Å}$

H

Simulation Details: composites

20peo40g

Initial Configurations

Simulation Protocol

Isobaric-Isothermal Molecular Dynamics Simulations AMBER forcefield for PEG, Gradual heating from 300K to 700K at 50K steps (energy minimization and NPT MD 30ns to 100ns at each T, P=1bar) followed by gradual cooling at 50K steps (30 to 100ns after energy minimization, depending on T). Trajectories of 30ns to 200ns depending on T

@ 600K after annealing –

Chain conformational changes

Comparison of average polymer global and local relaxation rates

Comparison between the nanocomposites and the bulk at constant chain size

11/30

Graphene Oxide/PAA: presence of specific interactions. Effects of filler's loading

C to O atom ratio of 5:1 and a hydroxyl to epoxy group ratio of 3:2 approximately

D. Stauffer et al., Journal of Chemical Physics 141 (2014) (GO model details, partial charges for GO)

Systems	Number of GO sheets	Number of PAA chains	wt % in GO
30paa7GO	7	30	14.5
30paa18GO	18	30	30.3
40paa40	0	40	0

Karatasos, K.; Kritikos, G., RSC Advances 2016, 6, 109267.

Karatasos, K.; Kritikos, Materials Today: Proceedings **2018** (5) 27526–27535

Thermal Behavior

Estimated values for T_g: 412 ± 4 K for the pristine PAA, 450 ± 10 K for 30paa7GO and 545 ± 9 K for 30paa18GO Comparison to experiment for the bulk PAA : 401 K (L. Shao *et al*, Soft Matter, 2010, **6**, 3363)

Exploring the bound layer at the polymer/filler interface

Fillers size: ~ 9x9nm²

- T_g PAA: 412K (1300 chains, 40 monomers/chain, unentangled)
- T_{g} PS: 360K (1485 chains, 40 monomers/chain, unentangled)
- Temperature range : 100-250K above the polymer's Tg

Kritikos, G.; Rissanou, A. N.; Harmandaris, V.; Karatasos, K. Bound Layer Polymer Behavior on Graphene and Graphene Oxide Nanosheets. *Macromolecules* **2020,** 53 (15), 6190-6203 **17/30**

Chain adsorption/desorption dynamics

Definition of layers

0 : from 0 to 5 Å from any filler's atom (bound layer)

1 : between 5 and 15 Å from any filler's atom

Bulk: >30 Å from any filler's atom

Adsorption criterion:

if any atom of the chain belongs to layer 0

Adsorption correlation function

$$h(t) = \frac{\langle g(t)g(0) \rangle}{\langle g^2 \rangle}$$

g(t) takes the value of 1, if at least one atom of the chain satisfies the adsorption criterion at time t and 0 otherwise. > denotes statistical averaging over all chains and time origins

Characteristics of the dynamic decoupling of the adsorbed layer from the bulk behavior

19/30

Chain conformational dynamics at the adsorption layer

Backbone dihedral ACF

$$P(\varphi(t)) = \frac{\langle \cos\varphi(t)\cos\varphi(0) \rangle - \langle \cos\varphi(0) \rangle^2}{\langle \cos\varphi(0)\cos\varphi(0) \rangle - \langle \cos\varphi(0) \rangle^2}$$

 $\varphi(t)$ symbolizes a backbone dihedral angle at time t.

Chain conformational dynamics adjacent to the adsorbed layer

21/30

22/30

Effects on thermal properties

$$\frac{Pv}{kT} + \left(1 - \frac{1}{r}\right)\tilde{\rho} + \ln(1 - \tilde{\rho}) + \chi\tilde{\rho}^2 = 0$$

Materials Today Communications **2017**, 13 (Supplement C), 359-366 Soft Matter **2020**, 16 (29), 6902-6913 Macromolecules **2021**, 54 (9), 4164-4175 P: pressure, v: segmental volume at the solid state r: the degree of polymerization, k : the Boltzmann's constant, $\tilde{\rho} = \rho'/\rho_{\rho_0}$ and ρ : density at T, ρ_0 : density at the solid state

 χ : FH parameter

P=1MPa, v=22-23Å^{3,} ρ_{o} (bulk)≅1.31 (g/cm³), ρ_{o} (PAAsGOhwt)≅1.35 (g/cm³) ρ_{o} (PAAGOhwt)≅1.40 (g/cm³)

 T_g of PAAGOhwt (large GO) \cong 471 K T_g of PAAsGOhwt (small GO) \cong 460 K

 $U = kT^* \tilde{\rho} (1 - \tilde{\rho}) N_A r / M W$

Polymer configurations: trains, loops, tails, bridges, free

How can the size of the filler affect the bound layer dynamics?

Does the presence of neighbouring flakes affect the bound layer dynamics?

Definition: the bound layer includes all polymer conformations at layer 0 of the surface

Conformational probability distributions

Conformational-specific local dynamics and adsorption/desorption at the bound layer

 The bulk vitrification times of the different conformations are reached at higher temperatures in the larger in size
GO composite and for the slower moving configurations.

At constant loading (red and black curves), longer desorption times in the larger GO systems

At constant GO size (large flake, red and blue curves), the desorption times increase at higher loading (stronger confinement) conditions.

Average chain relaxation and macroscopic properties

Summary of the main findings (for unentangled polymer chains)

Slower polymer dynamics close to the interface is associated with slow relaxing configurations such as trains, loops and bridges

➤ Larger flakes favor the formation of longer trains, more loops and longer-lived bridges. A higher filler concentration may also increase the number of bridges

Longer polymer chains are more likely to form such configurations, and thus to exhibit slower dynamics close to the interface.

➢ Higher nanoroughness slows down the interfacial motion, particularly the lateral diffusivity, resulting in slower and more anisotropic motion close to the interface

➢ Different chain characteristics and different interactions between the polymer matrix and the interface result in a different degree of "cloaking" of the surface dynamics from the bulk. A weak "cloaking" leads to slower polymer dynamics at longer distances from the interface, affecting more the average dynamic behavior

➤ A higher filler concentration, apart from confining global chain motion, it also results in a higher degree of overlap between the slow relaxing layers of neighboring flakes, and thus affects strongly the average polymer dynamics. This is related to a shift of the thermal transitions to higher temperatures, and to enhanced mechanical response of the composites

Acknowledgements

Collaborators

Projects/Funding Thank you for your attention!

Prof. V. Harmandaris	<i>This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the</i>	
Prof. A.V. Lyulin	Operational Program "Education and Lifelong	
Prof. A. Venkatnathan	<i>Learning" of the National Strategic Reference</i> <i>Framework (NSRF)</i>	
Dr. G. Kritikos Res in k	Research Funding Program: THALES - Investing in knowledge society through the European	
Dr. A. Rissanou	Social Fund, Project Title "High performance nanocomposite materials: Reinforcement of polymers	
Dr. R. Pant	<i>with advanced carbon and silica nanostructures</i> " and performed also in the framework of the	
Ms. RE. Roussou	COST Action MP1202 "Rational design of hybrid organic-inorganic interfaces: the next step towards	
Mr. S. Sengupta	advanced functional materials"	

Computing Resources

AUTh High Performance Computing (HPC)

ΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ALLA BIOY MAGHED unoversia the music YNDYPTEID DAIAEIAT & OPHEKEYMATON, DOAITLEMOY & AGAHTLEMOY ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

EUROPEAN UNION EUROPEAN SOCIAL FUND

