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With NCSA: Six Months Ahead of Competition
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History

1986 — Program founded with first industry partner, Eastman Kodak
1992 — First Grand Challenge Award: Eli Lilly

1993 — Caterpillar joins, wins Grand Challenge Award

2004 — Boeing recognized with Grand Challenge Award

2014 and 2017 — Winner of HPCwireTop Supercomputing Achievement

2017 — ExxonMobil sets sector world record

 Oil reservoir model: 3 months to 10 minutes, 719000 cores, $1B+ ROI

2020 — Majority of Industrial engagement becomes Al-oriented
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https://www.youtube.com/watch?v=VZt4djRgiGk
https://www.youtube.com/watch?v=VZt4djRgiGk

Engagement

Discover Build Deliver

Implement

Interview
stakeholders

Evaluate

Design solutions
Develop

Test
Loop as effectiveness

necessary Calculate ROI
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Eng

* |dentify challenges for companies that match team skills

obbvie ‘ <

* Be consultative: listen to needs and challenges

 Match needs with specific skills within team or with strategic
partners

 Define value proposition: what company gets from engagement

X ILLINOIS NCSA

GlaxoSmithKline



NCSA Industry Technical Team Expertise

Modeling and Simulation

Bioinformatics and Genomics

“Big” Data Analytics, GIS, and Al

Code Profiling and Optimization

Cyberinfrastructure and Security

Visualization

Much more at NCSA and the University of Illinois

-
2
-
Y
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National Petascale Computing Facility

World-Class Hosting Benefits
Data Center to Industry

e Dept. of Energy- e Low-cost power &
like security cooling

» 88000 sqft e 24/7/365 Help

25 MW of power; Desk
LEED Gold e Adjacent to and

e 400+ Gb/sec aligned with UIUC
bandwidth Research Park

¥

L ILLINOIS NCSA T~



*Forge — The HPC Environment for Industry

* Latest and best
— Computing (Intel/Skylake 192-256 GB)
— GPU driven Al technologies (V100)

* 99% uptime and live upgrades

* Development and production workhorse

* Rapid user support and advanced consulting

* Built exclusively for Industry’s applications
and workflows
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Engineering Application Breakthroughs on Blue Waters 2013-2020

64,000+ cores
LS-DYNA (Cray,
RRC, P&G, NCSA)

HTC, 600TB 100,000+ cores
H3Africa (IGB, Alya Multiphysics

HPCBio, U of C. ~90% PE @ 100K
Town, NCSA) ‘ 1(BSC & NCSA)
716,800+ cores ‘v‘

Oil & Gas 114,000+ cores
Reservoir Ansys-Fluent
Modeling (Exxon (Cray, Dell, NCSA)

& NCSA)

512 XK7 nodes 65,000+ cores
ACCEL_WSMP WSMP (IBM-
(NVIDIA, IBM- Watson, NCSA,
Watson, NCSA) BSC, RRC, Repsol)
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Two Real-World Cases Solved with Alya Multiphysics
Code from BSC on NCSA’s Blue Waters

Human Heart
Non-linear solid mechanics
Coupled with electrical propagation
3.4 billion elements, scaled to 100,000 cores

Kiln Fu rnace SGT5-BOO0OH pownscated can combustor
Transient incompressible turbulent flow
Coupled with energy and combustion
4.22 billion elements
Scaled to 100,000 cores @90% parallel efficiency
17.4 years on a serial PC down to 1.8 hours on BW
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Reducing the Time-to-Solution for High Fidelity Finite Element Analysis of
Gas Turbine Engines - from Months to Hours, 2015-2018
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DOF w/ contacts & NLGEOM 58" e
(RR) g 245 [0 .2
% & 10 4 =3
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Heration loop - Number of threads
E ‘ —— LSTC/NCSA/Cray/RRwill analyze (b) 10000
Scalability Studies changes and to verify
(Blue Waters) improvements fo implicit solver - 1000
g
3
; . o 100
: TR Validate improvements on RR ?
Einal Verification | | whole engine thermo-mechanical 3
Rolls-Royce engine model for (RR) models 10
thermo-mechanical analysis, >200M .
DOFS 2015 2016 2017 2018
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Massively Parallel Modeling in Oil & Gas & ROI

Ex¢onMobil °

1T ILLINOIS NCSA

Reservoir simulation models the complex
subsurface flows of fluids in oil and natural gas
reservoirs

Previous runtime: 3.5 months on prem
Optimized: 10 minutes on Blue Waters
716800 MPI processes, was the entire
engineering sector world record for degree of
parallelism

Minimized costs and environmental impact
ROI: USDS1+B



Large Scale Statistical HPC Analysis in Agriculture

Simulation Run using Different Number
of Nodes on iForge

11.87

9.04

7.32

° 541 , 0

434397
3.66 341 & gimulation Runs

Run Time (in hours)

12 16 20 24 28 32 36 40 44 48
Number of Nodes Used

1T ILLINOIS NCSA

Power statistical analysis uses massive data collected from
farm field trials to allow an agriculture partner of NCSA to
assess quality of their experimental designs

NCSA has developed an efficient and scalable
implementation in R to perform massive simulation using
multi-node parallelization and variable instantiation
techniques

Our new implementation decreases the size of the
program from over 50,000 lines to less than 100 lines,
reduces the processing time for a simulation with over
70,000 cases from 175 days (@partner) to less than 3.5
hours) (@HPC/iForge)

Courtesy of Dr. Dora Cai and an Industrial Partner of NCSA




Variant calling workflow optimization

Design Principles: ’ ’ 1 | T
g p FastQ | [ TAridr:rF')r:iT\rS : Tomme ‘ Alignment | Raw.bam .,:'1 Merge

FastQ [ ‘

| Merged | T Deduped | cealigned
i ‘ Duplicates BAM , I——4{ Realignment ! BAM

— Variant Caller | > Raw Vcf ll ! VQSR iﬁj Vcf

1. Modularity: Subdivides the workflow into individual |
parts independent from each other, can swap in/out \ Merge
different software based on the project’s need |

2. Data parallelism and scalability: Parallel execution of [ Realigned
tasks BAM |

3. Real-time logging, monitoring, data provenance _
tracking: Real time logging/monitoring progress of
jobs in workflow

| Base Quality
’ recalibration

e Designed and built a modular workflow using

4. Fault tolerance and error handling : Workflow should Cromwell/WDL for identifying genomic variants to be
be robust against hardware/software/data failure used by a major healthcare partner
5. Portability: Write the workflow once, deploy it in _ _ _ _ .
many environments. e Continued support and investigation into current trends
6. Development and test automation: Support multiple in the field for any updates that will enhance workflow
levels of automated testing performance
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Benchmarking of new variant calling tools on GPUs

e Benchmarked a new genomic variant calling
software which runs on GPU only

e Tested multiple tools within the suite,
determined the speed up of this software with

respect to the industry standard GATK
fg2bam Conversion

e Evaluated the biological accuracy by comparing @ GPUvariantcaller @ GATK
results to GATK, the gold standard of variant
calling.

8000

6000
e Tested the scalability of this software with

different sizes of genomic data to determine its
robustness.

4000

e Worked with our industry partners to test 2000

against their variant calling tools.

Mean Run Time (Minutes)

0 L < -
50x 75x% 100x

Sequence Coverage
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Four Paradigms in Science and Engineering

Relationship mining
Anomaly detection

energy 1o system by system

Density Functional
Theory,

Laws of ;
Thermodynamics Molecular Dynamics

Experiments

I
|
: U at paradigm:
I : ~ (Big) data
: 39 paradigm: B0 driven science
i Computational |\
: 2" paradigm: science : O
Model-based (simulations) PO = A . < .
1 paradigm: S theoreticod | O3 “Al is the new electricity”
Empirical | science 1) ’j 2 Prof. Andrew Ng, Stanford,
science i i (@, Coursera founder
1 AU = Q — W : Predictive analytics
1] Changein  Heat Work I Clustering
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APL Materials 4, 053208 (2016)
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Big Data and HPC Driven Deep Learning

Accuracy

\J

Amount of Data
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Large NN

Small NN

Traditional
Learning Algos

Accuracy Comparison

1.2
1
008
306
004

. l e

Random Forest Deep Learning
Algorithm

100
80
60
40
20

Runtime (in Seconds)

(@]

Runtime Comparison

® Runtime

Random Forest Deep Learning




Reduce Production Cost using Machine Learning

Prediction Values vs. Lab Results
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Production Run

Optimize ingredient recipes using Machine Learning predictive models
Make the predicted values closer to the real lab test results (ground truth)
 Reduce Mean Absolute Errors (MAE) from 0.73 to 0.43

ROI: USD$18 million annually by reducing the production cost
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Choosing and Applying Best Machine Learning Algorithm
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Choosing Best Machine Learning Algorithm

» Based on Root Mean Square Errors (RMSE) « Based on Median Values and Standard Deviation
Model RMSE Algorithm Accuracy Comparison
Name
VARHIGE
ARIMAHAGE 95
AN Made! 2 |
A Moce!2 § N R Truth
ARIMA T>U A i = . : R Value
T ' T :
Triviel Danse Moce 80
mpeny's Current Moge
i (i 1 ] 550
RISE {$MM] B M EN SYM { M D
Sum of RMSE (SM) for each Name, Algorithms
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Connecting Industrial Geospatial and AT Communities

Novel Spatial Data Generators to connect

i : S Worl
TensorFlow models with geospatial data :

- Handles geospatial data in consumable
formats by Al models without worrying about
their specs such as projection, resolution,
etc.

» Harmonizes multiple data sources and feeds

Geospatial Data Samples Deep Learning Model

them directly to the same Al model during
the training phase.

- Scales processing of archives of geospatial

data during the prediction phase. "

Geospatial Data Deep Learning Models

1T ILLINOIS NCSA




Surrogate Data-Driven Deep Learning Model

Validation
Database

HPC and Advanced
Computing Environment

BN sTAR-CCM+

nnnnnnn ' OpenVF_OAM — Accurate Results Inferenced
or] S T | Instantly and without HPC and
— Y B = Modeling Software
=4 G —

\ 4 \ 4 .

Training

Database
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Deep Learning for Topological Optimization of Metamaterials

Ground-truth Prediction
Topelogy optimization problem with random fa)
optimization parameters (V, fin, and 1D)
V= 0.717
JG S S - 53 = 5.178um
-l 1 ""l’ min I
1 r !
I I 1 Topology b)
! 4 optimization
1 I -
| -l ——_— - Optimized Vy =0.428
topology Pinin = 8.202 um
bf,‘,l“ bu1”' — 1.0% bn 2) — b"f]l =i | Data restructuring
l‘ of11) 0 & 22) 1.0% & 0 l Neural network Ground-truth I
)”, = : F:-?""] = ; F;"zwl = - input channels (target] image ()
g = 12 = 127 = 1.0%
l & Vy = 0.795
e ¥ ® o riin = 3.476
H ._. ® :'_.- v @ ... Tinin = 3.476um
L Ld
Materials & Design (2020), 109098 ¢ p—1¢
) in
Encoder Decoder

Deep Learning for Multlphysws Modeling of Vlsco— lastic Materials
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| Ll 14NN _,_,f_ Strass at element 10: Prediction

| \ b P —— Stress at element 20: Ground-truth
i 11/ \._:__-'f" ==+ Stress at element 20: Prediction

International Journal of Plasticity (2021), @6, 102852 il —

Input

Stress at element 30: Prediction
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Physics Informed Neural Network (PINN)
Tuning K-& Turbulence Model

Feedforward neural network Fluid physics constraints

o ZoNN

Q\
S
) 08 C

operator

‘ ° ) de de e Odu; 0 [vp Oe
/A\ﬁ I‘\G/’ E_l_lTia_X'i—l_CSlETijax]'_axi<0'_:axi>
g2 0%¢
'W
input nod o

1 Ncp 1 Ncp 1 Ncp 1 Ncp
Loss == (K™ —KI™)! =3 (67 =) o * o= D (1) + o, %23 (9
i=1 Ncp i=1 Ncp i=1 Ncp i=1

hidden nodes N,
Luo et al., International Supercomputing Five Parameters C,q, C,,, C,, 0k, 0. tuned by TF as 5 extra
Conference (I5C) 2020 Hyperparameters to additionally minimize Loss
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Comparison of the time-averaged Turbulent Kinetic Energy

DNS Solver ..

0.04(C
'0035

Five Empirical NN-pred
constant (Default) Fix C, (Ground Truth)o -0.03(
Cor 1.44 1.302 . | 0.02¢
Cep 1.92 1.862 Default - L 0.02C
Cy 0.09 0.09 K-g Solver ¢ |
-0.01¢
o, 1.0 0.751
2 1 L 0.01¢
P 1.3 0.273 K-€ Solver i
Tuned by PINN0 | 0.00=
0.00(

DNS Simulation ~ Weeks and Months

Luo et al., International Supercomputing K-£ Simulation ~ Minutes and Hours

Conference (I1SC) 2020
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The Ultimate Singularity in AI?

Al Reality Checks:

 No, machines can’t read better than humans (2018)
— https://www.theverge.com/2018/1/17/16900292/ai-reading-comprehension-machines-humans

e How IBM Watson Overpromised and Under-delivered on Al Health Care, IEEE
Spectrum By Eliza Strickland, April 2019

 DeepMind’s Latest A.l. Health Breakthrough Has Some Problems, by Julia Powles,
August 2019

Al machines can “learn” but not yet “think” (at least not like humans), and it remains
to be seen if, how, and when the major Al singularity point of true intelligence will
be reached?

1L ILLINOIS NCSA
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But be careful what you wish for!

THAT WAS SURPRISINGLY
EASY. HOW COME THE
ROBOTIC LPRIGING LsSED
SPEARS AND ROCKS
INGSTEAD OF MISSILES
AND LASERS”

IF YOU LOOK TO
HISTORICAL DATA,
THE VAST MAJORITY
OF BATTLE-WINNERS
USED PRE-MODERN
WEAPONRY.

Thanks to machine-learning algorithms,
the robot apocalypse was short-lived.
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Thank you!

Brendan McGinty — bmcaginty@Illlinois.edu

Dr. Seid Kori¢ — koric@lllinois.edu

NCSA.lllinois.edu/Industry

I NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS
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