Python for HPC

Dr. Simone Bacchio

Computational Scientist CaSToRC, The Cyprus Institute National Competence Center in HPC

Today's program

- 11:30-12:30 Performance in Python and Numpy
- ➤ 12:30-13:30 Lunch Break
- 13:30-14:30 Performance Optimization and Numba

Requirements:

- Some basic knowledge of Python
- Some basic knowledge of Numpy

Goal:

Understand performance issues of Python and how to use it for HPC

Programming languages & Performance

Not all programming languages are designed with performance in mind

"Pure" Python is slow, very slow, but it can be made very fast... Very important to learn how!

Why Python?

- Most used programming language in data science
- Interpreted and object oriented programming language
- Science- and data-oriented
- Easy to Learn and Use
- Huge community
- Hundreds of Python Libraries and Frameworks
- First choice for Big Data and Machine learning
- User-friendly and great APIs
- Easy deployment of software (PyPI)
- Build with a scientific approach (<u>PEPs</u>)
- Performance issues? They can be overcome

Year

How to learn Python?

How to use Python?

Pure Python and APIs

- Build up the logic and abstraction
- Make it effective and user-friendly
- Limit its use in computationally intensive parts

Compiled code & backends

- Many packages come with compile code
- Make it efficient and very fast (C performance)
- Use as much as possible in computations

Why is Python slow?

Python is a very powerful and flexible programming language, but...

- interpreted = bad (computational) performance
- it is important to know the strengths and the weaknesses!
- By its own it is not mean for High-Performance computing.

Built-in functions and HPC modules are based on **compiled** and **optimized** libraries. Use as much as possible:

- built-in functions
- numerical modules (<u>Numpy</u>, <u>Scipy</u>, <u>Pandas</u>, ...)
- compile your kernels (<u>Cython</u>, <u>Pythran</u>, <u>Numba</u>, ...)

NEVER do for-loops on data!

Numpy

Numpy nowadays is the Python standard for numeric array calculations

- It is largely used and many packages are based on its API
 - **Scipy:** uses Numpy for implementing numerical algorithms
 - **Cupy:** a Numpy-compatible implementation for GPUs
 - Numba: JIT compiler for Python code using Numpy
 - Pytorch: its API is largely based on Numpy (not fully compatible tough)
 - ...
- A very good knowledge of Numpy is fundamental
- Documentation: <u>https://numpy.org/doc/stable/</u>
- Remaining of the training on Numpy

Let's get started

- For the training we will use Jupyter Notebooks in Google Colaboratory <u>https://colab.research.google.com/drive/1B9_gVPwIXohe2MqOJ5II_NI20sfQUIdR</u>
- Open the link and start a new notebook or open in playground mode

Notebook and presentation also available on Github

https://github.com/CaSToRC-Cyl/NCC-Beginner-Training-2022

Performance

For basic operations, Numpy achieves close-to-optimal performance and it is 1000x times faster than pure Python

Performance

For basic operations, Numpy achieves close-to-optimal performance and it is 1000x times faster than pure Python

Remarks:

- For small arrays Python overheads dominate
- Operations are done serially and between a step and another a new array is created

Introduction to Numpy

- The core of Numpy is ndarray (n-dimensional array)
- An ndarray is defined by
 - **shape:** the size of the array along each dimension
 - **dtype:** the data type of the array and its size (arr.dtype.itemsize)
 - **ordering:** the data ordering in memory (C or F-contiguous)
- > Any operation on the array is done via compiled code with high performance
- Implementation-wise ndarray is a view of a 1-dimensional array (unrolled data)
 - See Python Buffer Protocol, <u>https://docs.python.org/3/c-api/buffer.html</u>
 - See Array Interface Protocol, https://numpy.org/doc/stable/reference/arrays.interface.html
 - See e.g. arr.__array_interface__

How does it work?

- N-dimensional arrays are views of unrolled data
- The shape is an artifact on the Python side but implementation-wise numpy always process unrolled data
- NOTE: for performance purposes, often many operation return different view of the same pointer. Therefore be careful when modifying arrays in-place!

Item access, modification and slicing

Arrays elements can be accessed and modified as for lists

- Elements per dimensions can be either extracted serially or at once
 - E.g. arr[0,1,2,3] = arr[0][1][2][3]
 - The first, of course, is optimal because avoids creation of intermediate arrays
- Slices, ranges or lists can me used for accessing multiple elements at once
 - Slices are open ranges
 - E.g. :10 == 0:10
 - Note: tuples cannot be used!
- Dimensions can be skipped using ellipses (...)
- Broadcasting also applies for element assignment
- > Assignment and assigning operations (+=) might change the original array!

Universal functions

- See <u>https://numpy.org/doc/stable/reference/ufuncs.html</u>
- Element-wise operations
 - Binary operations: +(add), -(sub), *(mul), /(div), %(mod), ==(eq), **(pow), ...
 - Math functions: exp, log, sin, cos, tan, ...
 - Custom functions can be implemented via np.vectorize

Reductions

- Equal to: for i in range(len(A)): r = op(r, A[i])
- Examples: sum, mean, std, max, min
- They can be performed axis-wise (via argument axis)
- Custom reductions can be implemented via ufunc.reduce
 - E.g. sum = add.reduce

Performance limitations

y = x ** 2 + 2 * x + 1

VS

for(int i=0; i<N; i++) {
 y[i] = x[i] ** 2 + 2 * x[i] + 1
}</pre>

What is the difference?

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Performance limitations

for(int i=0; i<N; i++) {
 y[i] = x[i] ** 2 + 2 * x[i] + 1
}</pre>

Left: 4 loop over data, 5 array access, 3 extra arrays allocated **Right:** 1 loop over data, 1 array access, no extra array allocated

> Any operation on the arrays creates intermediate results and therefore new arrays

VS

- > This is quite a performance drawback because many allocations and loops are done
- Additionally a compiled loop can be optimized and use "special" operations
- This issue can be solved using numba

Broadcasting

Arrays of different dimensions
 can be operated together

Requirements:

- Sizes must be <u>either 1 or equal</u> <u>comparing from right to left</u>
- If same size: they are combined element-wise
- If one-sized:

same value used for all axis

If missing dimensions:
 automatically one-sized from left

- > With numpy you can almost do everything, without having to write a for-loop in Python
- > For this you need a good knowledge of the API and can be achieved only practicing!
- > E.g. how to do "x[i+1] x[i]"? y = np.roll(x, -1) x
 - See e.g. <u>https://numpy.org/doc/stable/reference/routines.array-manipulation.html</u>
- Many examples available online or on stack overflow... just search!

You didn't find what you are looking for?

Try Numba!

Numba is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code.

- Documentation: https://numba.pydata.org
- Installation: pip install numba
- <u>CPU compiler:</u> from numba import jit
- GPU API: from numba import cuda

Easy compilation and parallelization

Numba easily compiles, vectorize and parallelize Python code!

Advantages?

- The code gets compiled reaching C-performance
- > The code can run in parallel using multi-threading

Issue?

You need to explicitly write for-loops in Python!

So if you do not have any other way than writing explicitly a for-loop... Then do it and use Numba to speed it up!

from numba import njit, prange

@njit(parallel=True)
def difference(arr):
 N = arr.shape[0]
 out = np.empty_like(arr)
 for i in prange(N):
 out[i] = arr[(i+1)%N] - arr[i]
 return out

Conclusions

Never do for-loop on data in Python

- Numpy comes first at rescue with its very user-friendly API
 - **NOTE:** Other packages are available, e.g. Pandas dataframe (on Wedsneday) but a very good knowledge of numpy is fundamental
- Use Numba to speed-up Python code
 - We just had time to scratch the surface. Give it a try it is very useful!
 - More will be covered in the intermediate training including GPU programming

Questions??