
Python for HPC

Dr. Simone Bacchio

Computational Scientist
CaSToRC, The Cyprus Institute
National Competence Center in HPC

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Today’s program

➢ 11:30-12:30 Performance in Python and Numpy

➢ 12:30-13:30 Lunch Break

➢ 13:30-14:30 Performance Optimization and Numba

Requirements:

➢ Some basic knowledge of Python

➢ Some basic knowledge of Numpy

Goal:

➢ Understand performance issues of Python and how to use it for HPC

2

What is your
knowledge of Python??

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Programming languages & Performance

➢ Not all programming languages are designed with performance in mind

Abstracted Programming Languages VS HPC Programming Languages

➢ Python
➢ Matlab
➢ R, etc..

“Pure” Python is slow, very slow, but it can be made very fast… Very important to learn how!

3

➢ Fortran
➢ C, C++

➢ Julia
➢ Java

Slow but easy-to-use Fast but difficult

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Why Python?

● Most used programming language in data science

● Interpreted and object oriented programming language

● Science- and data-oriented

● Easy to Learn and Use

● Huge community

● Hundreds of Python Libraries and Frameworks

● First choice for Big Data and Machine learning

● User-friendly and great APIs

● Easy deployment of software (PyPI)

● Build with a scientific approach (PEPs)

● Performance issues? They can be overcome

https://insights.stackoverflow.com/trends

4

https://pypi.org/
https://www.python.org/dev/peps/
https://insights.stackoverflow.com/trends

Dr. Simone Bacchio - Introduction to Python - 14/11/22

How to learn Python?

➢ Python has a very shallow learning curve, don’t stop learning!

5

Copy &
adapt
code

Break
your
code

Google
errors
messages

Read
stack-
overflow

Read packages
documentation

Write
new
code

Read
source
code

Write
your
package

Knowledge of
Python

Time &
Love for Python

Dr. Simone Bacchio - Introduction to Python - 14/11/22

How to use Python?

6

Pure Python and APIs Compiled code & backends

● Build up the logic and abstraction

● Make it effective and user-friendly

● Limit its use in computationally intensive parts

● Many packages come with compile code

● Make it efficient and very fast (C performance)

● Use as much as possible in computations

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Why is Python slow?

Python is a very powerful and flexible programming language, but…

● interpreted = bad (computational) performance

● it is important to know the strengths and the weaknesses!

● By its own it is not mean for High-Performance computing.

Built-in functions and HPC modules are based on compiled and optimized libraries.

Use as much as possible:

● built-in functions

● numerical modules (Numpy, Scipy, Pandas, …)

● compile your kernels (Cython, Pythran, Numba, …)

NEVER do for-loops on data!

Source
Code Parser Bytecode

InterpreterCompiled
libraries

ResultCompiled
application

7

https://numpy.org/
https://www.scipy.org/
https://pandas.pydata.org/
https://cython.org/
https://pythran.readthedocs.io/
https://numba.pydata.org/

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Numpy

➢ Numpy nowadays is the Python standard for numeric array calculations

➢ It is largely used and many packages are based on its API
● Scipy: uses Numpy for implementing numerical algorithms
● Cupy: a Numpy-compatible implementation for GPUs
● Numba: JIT compiler for Python code using Numpy
● Pytorch: its API is largely based on Numpy (not fully compatible tough)
● …

➢ A very good knowledge of Numpy is fundamental

➢ Documentation: https://numpy.org/doc/stable/

➢ Remaining of the training on Numpy

8

https://numpy.org/doc/stable/

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Let’s get started

➢ For the training we will use Jupyter Notebooks in Google Colaboratory
https://colab.research.google.com/drive/1B9_gVPwIXohe2MqOJ5lI_Nl20sfQUldR

➢ Open the link and start a new notebook or open in playground mode

➢ Notebook and presentation also available on Github
https://github.com/CaSToRC-CyI/NCC-Beginner-Training-2022

9

https://colab.research.google.com/drive/1B9_gVPwIXohe2MqOJ5lI_Nl20sfQUldR?usp=sharing
https://github.com/CaSToRC-CyI/NCC-Beginner-Training-2022

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Performance

➢ For basic operations, Numpy achieves close-to-optimal performance
and it is 1000x times faster than pure Python

10

W
hic

h o
ne

 is
 N

um
py?

?

Time

Performance

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Performance

➢ For basic operations, Numpy achieves close-to-optimal performance
and it is 1000x times faster than pure Python

➢ Remarks:
● For small arrays Python overheads dominate
● Operations are done serially and between a step and another a new array is created

11

Lower is better

Higher is better

Pure Python
Numpy (of course)

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Introduction to Numpy

➢ The core of Numpy is ndarray (n-dimensional array)

➢ An ndarray is defined by

● shape: the size of the array along each dimension

● dtype: the data type of the array and its size (arr.dtype.itemsize)

● ordering: the data ordering in memory (C or F-contiguous)

➢ Any operation on the array is done via compiled code with high performance

➢ Implementation-wise ndarray is a view of a 1-dimensional array (unrolled data)

● See Python Buffer Protocol, https://docs.python.org/3/c-api/buffer.html

● See Array Interface Protocol, https://numpy.org/doc/stable/reference/arrays.interface.html

● See e.g. arr.__array_interface__

12

https://docs.python.org/3/c-api/buffer.html
https://numpy.org/doc/stable/reference/arrays.interface.html

Dr. Simone Bacchio - Introduction to Python - 14/11/22

How does it work?

➢ N-dimensional arrays are views of unrolled data

➢ The shape is an artifact on the Python side but implementation-wise numpy always
process unrolled data

➢ NOTE: for performance purposes, often many operation return different view of the
same pointer. Therefore be careful when modifying arrays in-place!

13

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Item access, modification and slicing

➢ Arrays elements can be accessed and modified as for lists
● Elements per dimensions can be either extracted serially or at once

○ E.g. arr[0,1,2,3] = arr[0][1][2][3]
○ The first, of course, is optimal because avoids creation of intermediate arrays

➢ Slices, ranges or lists can me used for accessing multiple elements at once
● Slices are open ranges

○ E.g. :10 == 0:10
● Note: tuples cannot be used!

➢ Dimensions can be skipped using ellipses (...)

➢ Broadcasting also applies for element assignment

➢ Assignment and assigning operations (+=) might change the original array!

14

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Universal functions

➢ See https://numpy.org/doc/stable/reference/ufuncs.html

➢ Element-wise operations
● Binary operations: +(add), -(sub), *(mul), /(div), %(mod), ==(eq), **(pow), …
● Math functions: exp, log, sin, cos, tan, …
● Custom functions can be implemented via np.vectorize

➢ Reductions
● Equal to: for i in range(len(A)): r = op(r, A[i])
● Examples: sum, mean, std, max, min
● They can be performed axis-wise (via argument axis)

● Custom reductions can be implemented via ufunc.reduce
○ E.g. sum = add.reduce

15

https://numpy.org/doc/stable/reference/ufuncs.html

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Performance limitations

16

for(int i=0; i<N; i++) {
y[i] = x[i] ** 2 + 2 * x[i] + 1

}

VSy = x ** 2 + 2 * x + 1

What is the difference?

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Performance limitations

➢ Any operation on the arrays creates intermediate results and therefore new arrays

➢ This is quite a performance drawback because many allocations and loops are done

➢ Additionally a compiled loop can be optimized and use “special” operations

➢ This issue can be solved using numba

17

for(int i=0; i<N; i++) {
y[i] = x[i] ** 2 + 2 * x[i] + 1

}

VSy = x ** 2 + 2 * x + 1

a1 + a2

a3 + 1

y

Left: 4 loop over data, 5 array access, 3 extra arrays allocated
Right: 1 loop over data, 1 array access, no extra array allocated

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Broadcasting

➢ Arrays of different dimensions
can be operated together

Requirements:

● Sizes must be either 1 or equal
comparing from right to left

● If same size:
they are combined element-wise

● If one-sized:
same value used for all axis

● If missing dimensions:
automatically one-sized from left

18

(4,3)

(4,3)

(4,1)

(4,3)

(1,3)=(3)

(1,3)=(3)

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Additional operations

➢ With numpy you can almost do everything, without having to write a for-loop in Python

➢ For this you need a good knowledge of the API and can be achieved only practicing!

➢ E.g. how to do “x[i+1] - x[i]”? y = np.roll(x,-1) - x

● See e.g. https://numpy.org/doc/stable/reference/routines.array-manipulation.html

➢ Many examples available online or on stack overflow… just search!

You didn’t find what you are looking for?

➢ Try Numba!

19

https://numpy.org/doc/stable/reference/routines.array-manipulation.html

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Numba: a JIT compiler for Python

20

Numba is an open source JIT compiler that translates a subset of Python and

NumPy code into fast machine code.

➢ Documentation: https://numba.pydata.org

➢ Installation: pip install numba

➢ CPU compiler: from numba import jit

➢ GPU API: from numba import cuda

https://numba.pydata.org

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Easy compilation and parallelization

➢ Numba easily compiles, vectorize and
parallelize Python code!

Advantages?

➢ The code gets compiled reaching C-performance
➢ The code can run in parallel using multi-threading

Issue?

➢ You need to explicitly write for-loops in Python!

So if you do not have any other way than writing explicitly a for-loop…
Then do it and use Numba to speed it up!

21

from numba import njit, prange

@njit(parallel=True)
def difference(arr):
 N = arr.shape[0]
 out = np.empty_like(arr)
 for i in prange(N):
 out[i] = arr[(i+1)%N] - arr[i]
 return out

Dr. Simone Bacchio - Introduction to Python - 14/11/22

Conclusions

➢ Never do for-loop on data in Python

➢ Numpy comes first at rescue with its very user-friendly API

● NOTE: Other packages are available, e.g. Pandas dataframe (on Wedsneday)
but a very good knowledge of numpy is fundamental

➢ Use Numba to speed-up Python code

● We just had time to scratch the surface. Give it a try it is very useful!

● More will be covered in the intermediate training including GPU programming

22

Questions??

