

RESEARCH • TECHNOLOGY • INNOVATION

National Competence Center in HPC - Cyprus

EURO

Introduction High-Performance Computing - Dr. S. Bacchio

In today's talk

Introduction to High-Performance Computing

• Supercomputers in Europe, present and future

HPC NCC - CaSToRC

EuroHPC

Joint Undertaking

CSCS

ΤΟΡ

EURO

The List.

THE CYPRUS

•TECHNOLOGY•INNOVATION

- The TOP500 list, analysis of the trends
- Co-processors: CPU vs GPU architecture
- Parallel computing

Inside a supercomputers

HPC NCC - CaSToRC

X no hard-drive and **X** no voltage convertor Centralized long-term storage and power supply

EURO

Inside a supercomputers

Supercomputers in Europe

Supercomputers in Europe

TOP 500 - The List.

FLOP/s = Floating Point Operations per Second (in double precision) A Standard PC does about 50 Gflops (CPU) and 1 Tflops (GPU).

TOP 500 - The List.

FLOP/s = Floating Point Operations per Second (in double precision) A Standard PC does about 50 Gflops (CPU) and 1 Tflops (GPU).

Evolution of technology

Exascale is a milestone in HPC

Exascale Systems"

DARPA, US (2008), "ExaScale Computing

Exascale systems predicted for 2015

It has revealed to be not only an iconic

milestone but a real challenge!

Study: Technology Challenges in Achieving

since 2008:

>

 \succ

42 Years of Microprocessor Trend Data

HPC NCC - CaSToRC

EURO

EuroHPC Joint Undertaking

The European High Performance Computing Joint Undertaking (EuroHPC JU) is pooling European resources to buy and deploy top-of-the-range supercomputers and develop innovative exascale supercomputing technologies and applications.

The JU is currently supporting two main activities:

- Developing a pan-European supercomputing infrastructure:
 - **5 PetaFlop machines** in Bulgaria, Czech, Luxembourg, Slovenia, Portugal
 - **3 Pre-Exascale machines** with over 200 PetaFlops: Lumi in Finland, Leonardo in Italy and Marenostrum 5 in Spain
 - 2 Exascale machines: JSC in Germany, TBD

Upcoming Budget (2021 - 2033): 8 billion Euro

EuroHPC Joint Undertaking

TOP HPC systems

JUNE	2022	SYSTEM	SPECS	SITE	COUN	TRY CORES	RMAX PFLOP/S	B POWER
1	Frontier		HPE Cray EX235a, AMD Opt 3rd Gen EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-10	DOE/SC/ORNI	L USA	8,730,11	2 1,102.0	21.3
2	Fugaku		Fujitsu A64FX (48C, 2.2GHz), Tofu Interconnect D	RIKEN R-CCS	Japan	7,630,84	8 442.0	29.9
3	LUMI		HPE Cray EX235a, AMD Opt 3rd Gen EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-10	EuroHPC/CSC	Finland	1,268,73	6 151.9	2.94
4	Summit		IBM POWER9 (22C, 3.07GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNI	USA	2,414,59	2 148.6	5 10.1
5	Sierra		IBM POWER9 (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LL	NL USA	1,572,48	0 94.6	5 7.44
Тор	Europe	ean systei	ns:	SITE	COUNTRY	CORES	Rmax P	OWER
3	LUMI		AMD EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11	CSC	Finland	1,268,736	151.9	2.9
10	Adastra		AMD EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11	GENCI	France	319,072	46.1	0.9
11	JUWELS	Booster	AMD EPYC 7402 (24C 2.8GHZ), NVIDIA A100, Mellanox HDR Infiniband	Juelich	Germany	449,280	44.1	1.8
21	Marconi	-100	IBM POWER9 (16C, 3GHz), NVIDIA V100, Mellanox EDR Infiniband	Cineca	Italy	347,776	21.6	1.4
23	Piz-dain	t	Xeon E5-2690v3 (12C 2.6GHz), NVIDIA P100, Cray/HPE	CSCS	Switz	387,872	21.2	2.4

TOP HPC systems

JUNE	2022	SYSTEM	SPECS	SITE	CO	UNTRY	CORES	Rm/ PFLO	AX P/S	POWER MW
1	Frontier		HPE Cray EX235a, AMD Opt 3rd Gen EPYC 64C 2GHz, AMD Instinct MI250X, Spingshot-10	DOE/SC/ORN	L USA	N.	8,730,112	2 1,10	2.0	21.3
2	Fugaku		Fujitsu A64FX (48C, 2.2GHz), Tofu Interconnect D	RIKEN R-CCS	Japa	an	7,630,848	3 44	2.0	29.9
3	LUMI		HPE Cray EX235a, AMD Opt 3rd Gen EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-10	EuroHPC/CSC	: Finl	and	1,268,736	5 15	1.9	2.94
4	Summit		IBM POWER9 (22C, 3.07GHz) NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORN	L USA	N.	2,414,592	2 14	8.6	10.1
5	Sierra		IBM POWER9 (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LI	LNL USA	N.	1,572,480) 9	4.6	7.44
Тор	Europe	ean syste	ems:	SITE	COUNTR	Y COF	RES	Rmax	POV	VER
3	LUMI		AMD EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11	CSC	Finland	1,2	68,736	151.9	2.9	£
10	Adastra		AMD EPYC (64C 2GHz), AMD Instinct MI250X, Slingshot-11	GENCI	France	3	19,072	46.1	0.9	£
11	JUWELS	Booster	AMD EPYC 7402 (24C 2.8GHZ), NVIDIA A100, Melanox HDR Infiniband	Juelich	Germany	ب 4	49,280	44.1	1.8	3
21	Marconi	-100	IBM POWER9 (16C, 3GHz), NVIDIA V100, Melanox EDR Infiniband	Cineca	Italy	3	47,776	21.6	1.4	1
23	Piz-dain	t	Xeon E5-2690v3 (12C 2.6GHz), NVIDIA P100, Cray/HPE	CSCS	Switz	3	37,872	21.2	2.4	1

Future Systems

-uropean sys	stems:	SITE	COUNTRY	PFLOP/S
Jupiter	TBD (GPU-based system, NVIDIA or AMD)	JSC	Germany	1500
MareNostrum5	Intel Xeon CPUs, NVIDIA Ampere A100	BSC	Spain	314
Leonardo	Intel Xeon CPUs, NVIDIA Ampere A100	Cineca	Italy	250
JSA systems	:	SITE	COUNTRY	PFLOP/S
JSA systems El Capitan	: AMD Epyc CPUs, <mark>AMD Instinct GPUs</mark>	site NNSA	COUNTRY USA	PFLOP/S 2000
	Jupiter MareNostrum5 Leonardo	JupiterTBD (GPU-based system, NVIDIA or AMD)MareNostrum5Intel Xeon CPUs, NVIDIA Ampere A100LeonardoIntel Xeon CPUs, NVIDIA Ampere A100	JupiterTBD (GPU-based system, NVIDIA or AMD)JSCMareNostrum5Intel Xeon CPUs, NVIDIA Ampere A100BSCLeonardoIntel Xeon CPUs, NVIDIA Ampere A100Cineca	JupiterTBD (GPU-based system, NVIDIA or AMD)JSCGermanyMareNostrum5 Intel Xeon CPUs, NVIDIA Ampere A100BSCSpainLeonardoIntel Xeon CPUs, NVIDIA Ampere A100CinecaItaly

AMD and Intel have started only recently in producing GPUs for HPC systems NVIDIA has dominated the market for more than 10 years

Hardware Vendors

Accelerators/Co-processors

CPUs vs GPUs

Low latency or High-throughput?

CPU

- Optimized for low-latency access to cached data
- Complex control logic (thousands of instructions available)
- Large caches (L1, L2, etc.)
- Optimized for serial operations
- Shallow pipelines (< 30 stages)
- Newer CPUs have more parallelism (becoming more GPU-like)

GPU

- **Optimized for data-parallel** throughput computation
- High latency tolerance
- High compute density per memory access
- High throughput
- Deep pipelines (hundreds of stages)
- Newer GPUs have better control logic (becoming more CPU-like)

Why is the architecture important?

The architecture affects the design of HPC software:

HPC NCC - CaSToRC

- Memory bandwidth
- Cache memory size
- Frequency
- Number of cores
- Instruction set:
 - Floating point operations (e.g. y = ax + b)
 - Single Instruction Multiple Data (SIMD)
- Architecture-specific features

EURO

Why is the architecture important?

The architecture affects how we program the software:

• Intrinsic functions in C/C++ that are architecture-dependent

HPC NCC - CaSToRC

- Architecture-dependent **extension of the programming lang**:
 - CUDA for NVIDIA GPUs -> nvcc compiler
 - **HIP** for AMD GPUs -> hipcc compiler

All in one solution (CPUs, GPUs, FPGAs):

- **OpenCL**: open-source framework in C/C++
- **OneAPI** and **DPC++**: developed by Intel, C/C++ framework and extension of the programming language

Other alternatives? Standard libraries

- Standard Software Libraries define formal APIs to be implemented and optimized on specific architectures. Examples are
 - **BLAS:** Basic Linear Algebra Subroutines
 - LAPACK: Linear Algebra Package
 - ...
- > These then have different implementations for various architectures:
 - **OpenBLAS:** Open-source library of BLAS
 - Intel MKL: Intel's implementation of BLAS and LAPACK
 - **cuBLAS:** NVIDIA's implementation of BLAS
 - **hipBLAS:** AMD's implementation of BLAS
- \succ For reference see e.g.
 - <u>shorturl.at/aOPY6</u>

BLAS and Sparse BLAS Routines

Intel® oneAPI Math Kernel Libraryimplements the BLAS and Sparse BLAS routines, and BLAS-like extensions.

- BLAS Level 1 Routines (vector-vector operations)
- BLAS Level 2 Routines (matrix-vector operations)
- BLAS Level 3 Routines (matrix-matrix operations)
- Sparse BLAS Level 1 Routines (vector-vector operations).
- Sparse BLAS Level 2 and Level 3 Routines (matrix-vector and matrix-matrix operations)
- BLAS-like Extensions

HPC is not only in-node performance

- Within a single node one can use multithreading and shared memory
 - E.g. see OpenMP
- But various nodes do not share memory and one needs to use the network to exchange data. This is referred to as distributed computing!
 - E.g. see MPI

How to distribute?

- Task parallelism:
 - Independent tasks
- Distributed Data:
 - Independent Data
- Pipeline parallelism:
 - Dependent tasks/data
- Modular computing:
 - > Architecture-dependent

- Task parallelism:
 - Independent tasks
- Distributed Data:
 - > Independent Data
- Pipeline parallelism:
 - Dependent tasks/data
- Modular computing:
 - > Architecture-dependent

- Task parallelism:
 - Independent tasks
- Distributed Data:
 - > Independent Data
- Pipeline parallelism:
 - Dependent tasks/data
- Modular computing:
 - > Architecture-dependent

- Task parallelism:
 - Independent tasks
- Distributed Data:
 - > Independent Data
- Pipeline parallelism:
 - Dependent tasks/data
- Modular computing:
 - > Architecture-dependent

CPU —	Task 1	Task 2	Task 2 Task 3		
GPU —	Task 1	Task 2	Task 3	Task 4	

How to research using HPC

Scientific problem

- > Numerical approach
- Computationally intensive
- > Parallelizable (task or data)

- > Optimized for HPC
- > Scalable

Access to a Supercomputer

- > Preparatory access
- Software test and benchmark
- Competitive proposal for computing time

Production of results and analysis

- About 1 year long or more
- Tera-/Peta-bytes of data produced
- Various publications

EURO

HPC NCC - CaSToRC

How to research using HPC

Scientific problem

- > Numerical approach
- Computationally intensive
- Parallelizable (task or data)
- Software
 - Optimized for HPC
 - > Scalable

Access to a Supercomputer

- Preparatory access
- Software test and benchmark
- Competitive proposal for computing time

Production of results and analysis

- About 1 year long or more
- Tera-/Peta-bytes of data produced
- Various publications

HPC NCC - CaSToRC

Extra activities:

- Algorithmic research
- Numerical improvements

EURO

- Software development
- New methodologies
- Machine Learning

HPC research in Cyprus

HPC NCC - CaSToRC

EURO

THE CYPRUS

NSTITUTE

Our HPC systems

- **Cy-Tera** (2012 Legacy):
 - 98 nodes, 12-cores Intel Xeon CPU
 - ~300 TFlops
 - served > 480 projects
- Cyclone (2020 Active):
 - 33 nodes, 2 x 20-cores Intel Xeon CPUs
 - 16 nodes with 4 x NVIDIA V100 GPUs
 - ~600 TFlops
 - Applications for access at <u>https://hpcf.cyi.ac.cy/apply/</u>
- **Upcoming** a new system for industrial applications with latest NVIDIA or AMD GPUs
- Prototype systems:
 - **Cyclamen** (2018): 8 nodes, 2 x 16-cores Intel Xeon CPU, 2 x NVIDIA P100 GPUs
 - Phi (2011): 4 nodes, 16-cores Intel Xeon CPU, 16 Xeon Phi accelerators

For more details, see <u>https://castorc.cyi.ac.cy/infrastructure</u>

EURO

HPC NCC - CaSToRC

Thank you!

Thank you!

Thank you for you attention

... and talk to you later!

