Machine learning and highperformance computing for neutrino oscillations

Saúl Alonso-Monsalve ETH Zurich

Fall Seminar Series National HPC Competence Centre The Cyprus Institute 18 October 2022

Overview

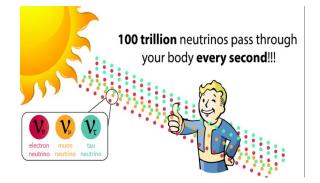
- Introduction to neutrinos.
- Deep learning in neutrino experiments:
 - Deep Underground Neutrino Experiment (DUNE).
 - Tokai to Kamioka (T2K).
- Study of deep-learning workloads.
- Summary.

Overview

- Introduction to neutrinos.
- Deep learning in neutrino experiments:
 - Deep Underground Neutrino Experiment (DUNE).
 - Tokai to Kamioka (T2K).
- Study of deep-learning workloads.
- Summary.

Neutrinos

- Neutrinos are light subatomic particles.
 - They are present since the origin of the Universe.
 - They are the second most abundant particle in the Universe, after photons.



- There are three types of neutrinos (and their corresponding antineutrinos), known as flavours.
 - Electron neutrino ($\nu_{\rm e}$), muon neutrino (ν_{μ}), and tau neutrino (ν_{τ}).
 - They differ in the way they interact with other particles.
- **Neutrinos oscillate***, meaning that hey can change their flavour.
 - A neutrino generated with a specific flavour can later be measured to have a different flavour.

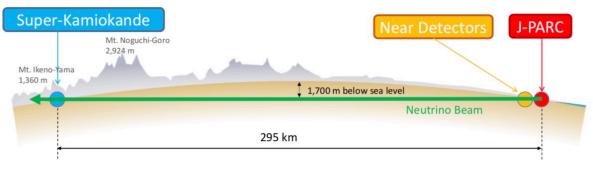
*2015 Nobel Prize in Physics. Takaaki Kajita, Art McDonald: "For the discovery of **neutrino oscillations**, which shows that neutrinos have mass."

Mystery of neutrinos

- Neutrinos are elementary particles belonging to the Standard Model (SM) of particle physics.
- The SM is one of the **most successful theories in physics**.
 - It can be used to explain most of the experimental observations.
 - However, it cannot explain the phenomenon of neutrino oscillations.
- Neutrinos can be the key to discover physics beyond the SM.
 - Current measurements do not explain why the Universe is matter-dominated.
 - The difference in how matter and antimatter particles interact is known as *CP*-violation.
 - It is possible that neutrinos and antineutrinos oscillate differently, and a discovery of *CP*-violation in neutrino oscillations could be the catalyst to understanding the matter-antimatter asymmetry of the Universe.

Neutrino oscillation experiments

- Long-baseline neutrino oscillation experiments use two detectors to characterise a beam of (anti)neutrinos.
 - A near detector, located a few hundred metres away from the target that determines the original beam composition.
 - A far detector, located several hundred kilometres away, that measures neutrinos flavour oscillations.
- Example: the T2K experiment in Japan.



Source: https://www.t2k-experiment.org/t2k/

Some open challenges in neutrino physics

- Maximise the CP-violation sensitivity: efficiently identify the signal interactions and have a powerful rejection of background events.
 - **Precise algorithms** are needed to achieve very high signal efficiency and background rejection for event classification.
- **Reconstruct particle tracks** that are detectable in fine-grained detectors.
 - It is necessary to develop mechanisms to fit and categorise the different 3D hits, so most of the ambiguities can be identified and rejected.
- Reduce the gap between simulated and experimental data.
 - The detector design and optimisation are always guided by accurate and computationally-expensive simulations of the detector behaviour.
 - Ensuring the robustness of algorithms against systematic uncertainties becomes a fundamental requirement.

Overview

Introduction to neutrinos.

• Deep learning in neutrino experiments:

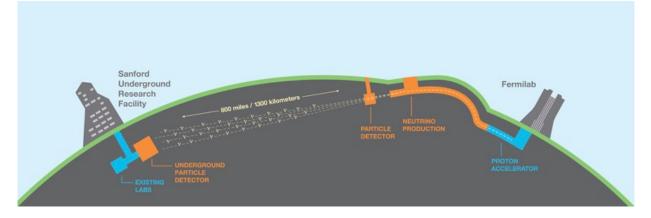
- Deep Underground Neutrino Experiment (DUNE).
- Tokai to Kamioka (T2K).
- Study of deep-learning workloads.
- Summary.

Overview

- Introduction to neutrinos.
- Deep learning in neutrino experiments:
 - Deep Underground Neutrino Experiment (DUNE).
 - Tokai to Kamioka (T2K).
- Study of deep-learning workloads.
- Summary.

The DUNE experiment

 The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino oscillation experiment.

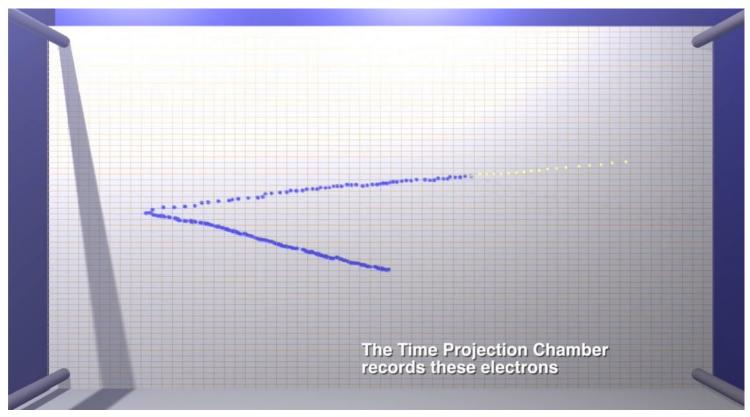


Source: https://www.dunescience.org/

- The far detector is 1300 kilometres from the neutrino beam source.
 - It will consist of four 10 kt LArTPC detectors.
- Look for the appearance of electron (anti)neutrinos at the far detector.
 - Measure CP-violation.

LArTPC

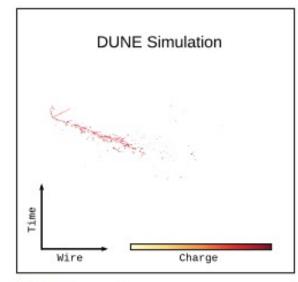
- Liquid-Argon Time Projection Chamber (LArTPC).
 - This provides "images" of each neutrino interaction.



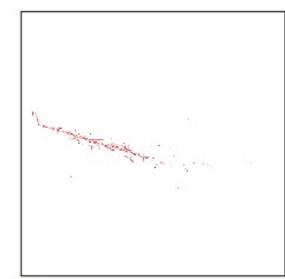
Source: <u>https://www.youtube.com/c/fermilab</u>

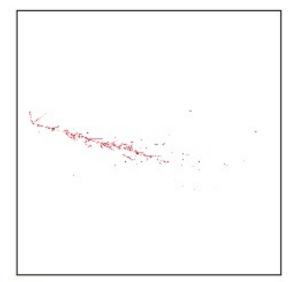
Far detector data

- The Far Detectors contain three wire readout planes.
 - This provides three "images" of each neutrino interaction.
- Official simulated electron neutrino interaction (signal).



(a) View 0: induction plane (U)

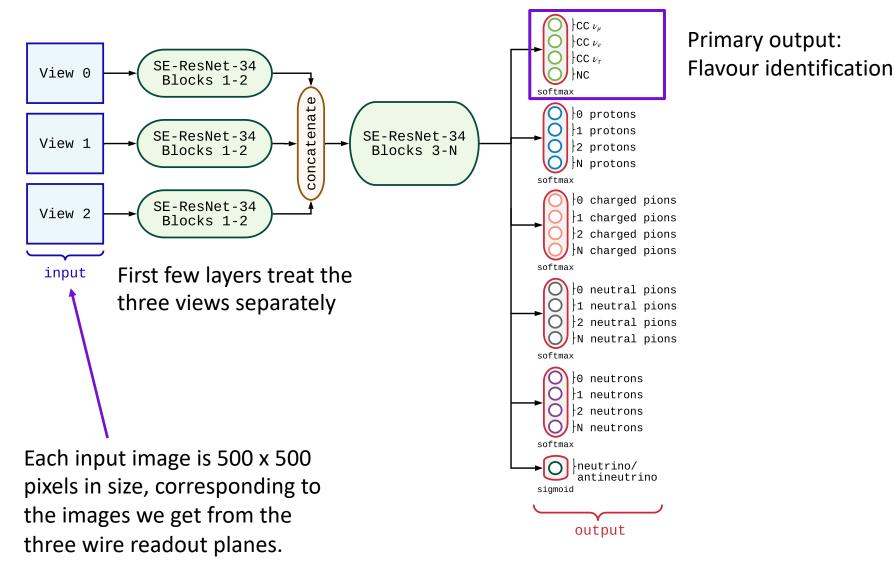




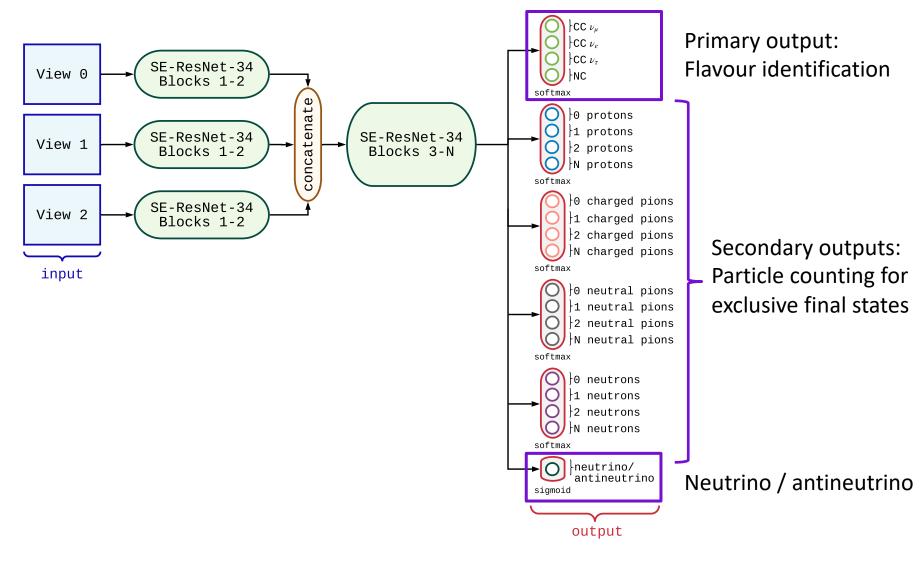
(b) View 1: induction plane (V)

(c) View 2: collection plane (Y)

DUNE CVN overview (2018)



DUNE CVN overview (2018)

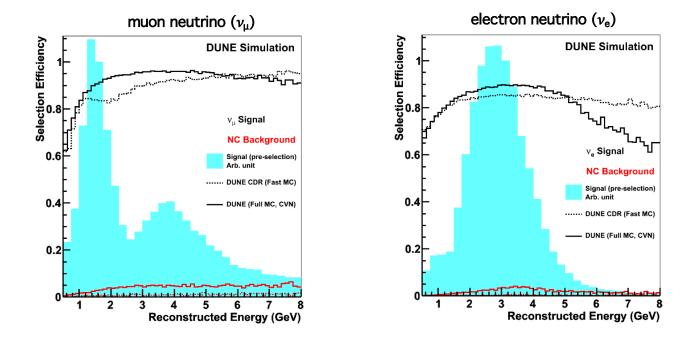


Training and using the CVN

- Training details:
 - Use ~10M images of simulated neutrino interactions.
 - Tested on a fully independent sample (also ~10M images).
 - Trained for 15 epochs on 8 NVIDIA Tesla V100 GPUs, using Keras on top of TensorFlow (recently moved to TF2.0).
 - SGD as optimiser; mini-batch size of 64 events, learning rate of 0.1, weight decay of 0.0001, and momentum of 0.9.
 - Small data release of the code is available at <u>https://github.com/DUNE/dune-cvn</u>.
- Publication: B. Abi et al. (DUNE Collaboration), ``Neutrino interaction classification with a convolutional neural network in the DUNE far detector", ISSN: 2470-0029.
 - <u>https://doi.org/10.1103/PhysRevD.102.092003</u>.
- The primary output results (flavour) were used in the official DUNE neutrino oscillation sensitivity analyses.
 - DUNE Technical Design Report (TDR): <u>arXiv:2002.03005</u>.
 - DUNE Long-baseline (LBL) analysis: <u>https://doi.org/EPJC/S10052-020-08456-Z</u>.

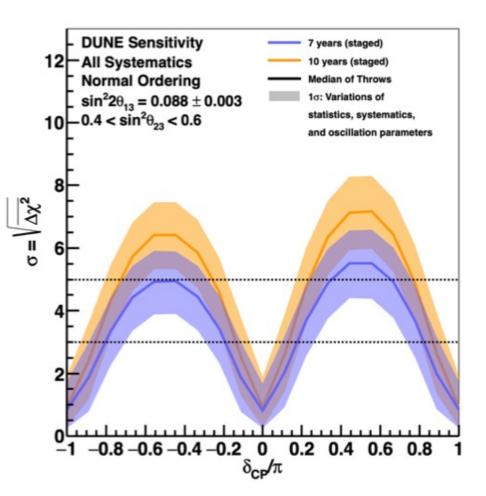
Efficiencies

- Muon neutrinos:
 - Select all events that are more than 50% likely to be muon neutrinos.
 - Over 90% selection efficiency in the flux peak.
- Electron neutrinos:
 - Select all events that are more than 85% likely to be electron neutrinos.
 - Over 90% selection efficiency in the flux peak.



DUNE CP-violation sensitivity

- Same selection criteria:
 - v_e selection: $P(v_e) > 85\%$.
 - v_{μ} selection: $P(v_{\mu}) > 50\%$.
- The solid lines show the median sensitivity.
- Results available at DUNE Long-baseline analysis article: <u>https://doi.org/10.1140/e</u> pjc/s10052-020-08456-z
- Milestone for the experiment!



Light simulation using GANs

- Accurate simulations are critical to HEP experiments.
 - They are typically computationally expensive.
 - There is great interest in fast simulations.
- In the current **DUNE photon detector simulation**, the entire geometry is stored in memory.
 - The idea is to have higher resolution and cover a larger volume, both of which will make it impossibly large.
- The approach is to try the fast-simulation segment from our Model-Assisted GAN (MAGAN) to speed things up.
 - Modification of a Generative adversarial network (GAN); details in backup.
 - S. Alonso-Monsalve and L. H. Whitehead, "Image-Based Model Parameter Optimization Using Model-Assisted Generative Adversarial Networks," in *IEEE Transactions on Neural Networks and Learning Systems*, 2020. DOI: <u>https://doi.org/10.1109/TNNLS.2020.2969327</u>.

Generative adversarial networks

• Generative adversarial networks (GANs) have been shown to produce fake images indistinguishable from true images.

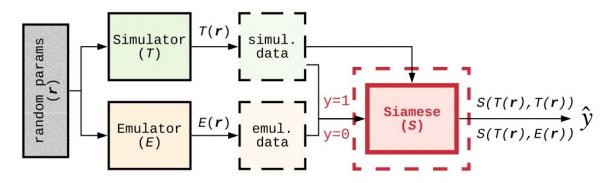
arXiv:1812.04948

arXiv:1809.11096

Saúl Alonso-Monsalve

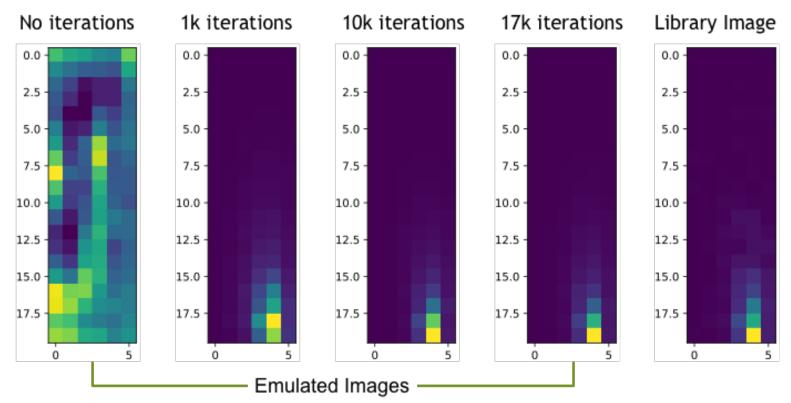
Application to the DUNE photon detector simulation (2019)

- The goal is to learn the whole simulation using a GAN.
- The model parameters are just (*x*,*y*,*z*).
 - Output: photon detector system as a 20x6 pixel image, where each pixel gives the visibility of one photon detector.
- Trained on 3M images.
- Our implementation is similar to a conditional-GAN.
 - However, instead of using a standard discriminator, we use a Siamese network in order to make sure the true (simulated) and the fake (emulated) images are the same for the same input parameters.



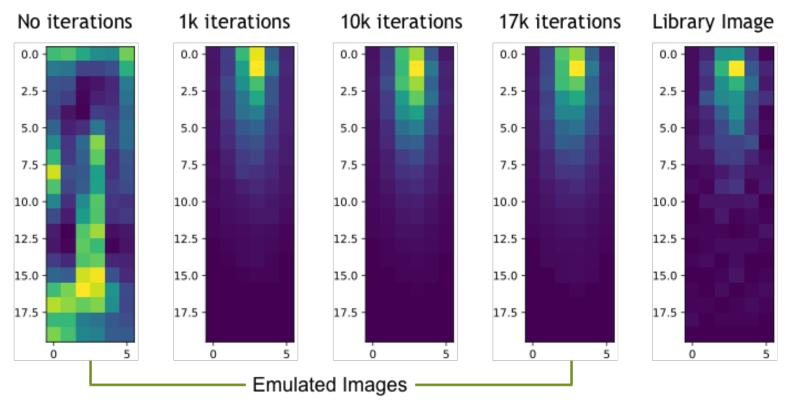
Example Image I

• We trained for roughly 17k iterations.



Example Image II

• We trained for roughly 17k iterations.



 The simulation takes ~1 week to produce 1M images, while the GAN takes less than two minutes to produce the same number of images on a V100 GPU.

Overview

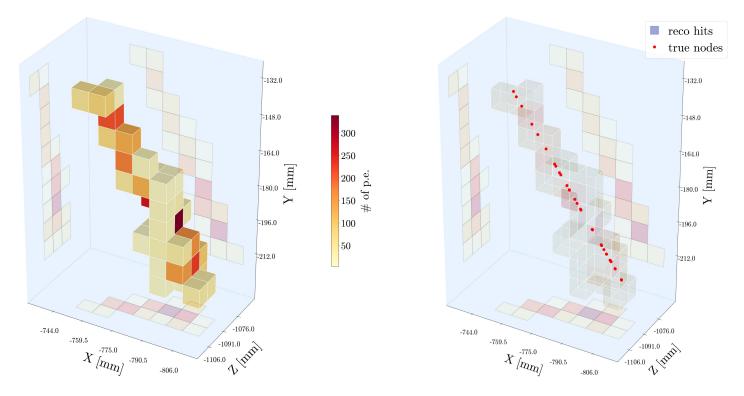
- Introduction to neutrinos.
- Deep learning in neutrino experiments:
 - Deep Underground Neutrino Experiment (DUNE).
 - Tokai to Kamioka (T2K).
- Study of deep-learning workloads.
- Summary.

T2K

- Tokai to Kamioka (T2K) is a long-baseline neutrino experiment in Japan, and is studying neutrino oscillations.
- Super Kamiokande (far detector): very large cylinder of ultra-pure water, detects muon neutrino after oscillating.
- ND280 (near detector): measures the number of muon neutrinos in the beam before any oscillations occur and characterizes the physical properties of the beam.
 - In the near future, an upgrade of the ND280 is planned.

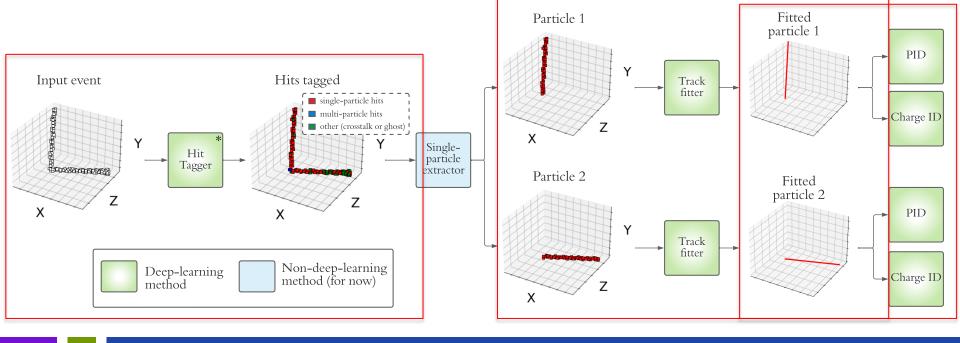
T2K's ND 280 upgrade: SuperFGD detector

- Full active fine-grained detector (FGD) with three views: SuperFGD.
 - Optically independent cubes: spatial localization of scintillation light.
 - Lower momentum threshold: 1 single hit gives immediately XYZ.
 - Example of a simulated muon neutrino:



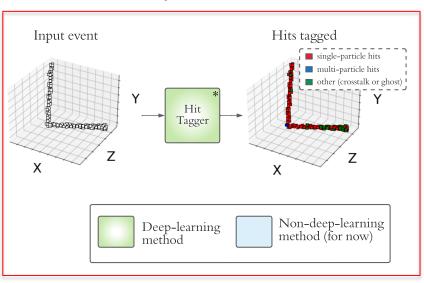
Reconstruction-chain using deep learning

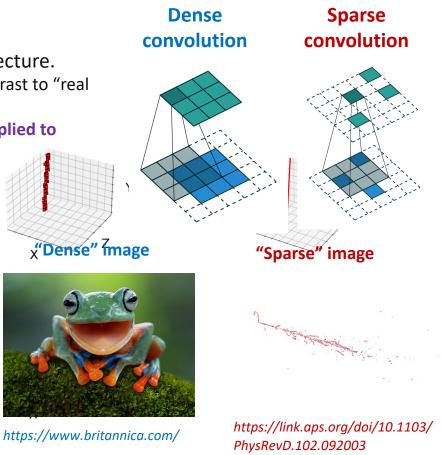
- Most steps of the reconstruction in the SFGD can be done using deep learning:
 - Method 1: Hit tagging (identify different kinds of hits).
 - Method 2: Track fitting (adjust the particle trajectory)
 - Method 3: Identify the particle and the charge.
- The algorithms are implemented in PyTprch and run on an NVIDIA A100 GPU.



Method 1: Hit tagging (2020)

- Classify each individual hit as:
 - Single-particle hit: only one particle passes through the hit cube and no other tracks pass through its adjacent cubes
 - Multiple-particle hit: at least two different particles pass through the hit cube and its adjacent cubes.
 - Other: mainly crosstalk.
- Using a sparse U-Net-based neural network architecture.
 - Neutrino detector data is inherently sparse, in contrast to "real world" images (i.e., photos).
 - Standard CNNs are very inefficient when applied to sparse data.





Method 1: Hit tagging (2020)

- Classify each individual hit as:
 - **Single-particle hit**: only one particle passes through the hit cube and no other tracks pass through its adjacent cubes
 - **Multiple-particle hit**: at least two different particles pass through the hit cube and its adjacent cubes.

Х

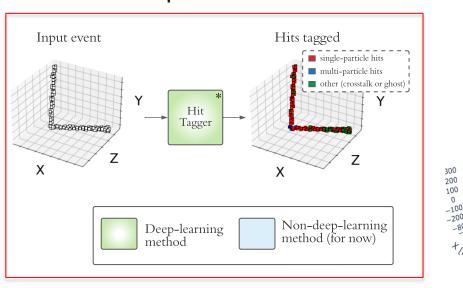
-^{J0} 200 400 600 800

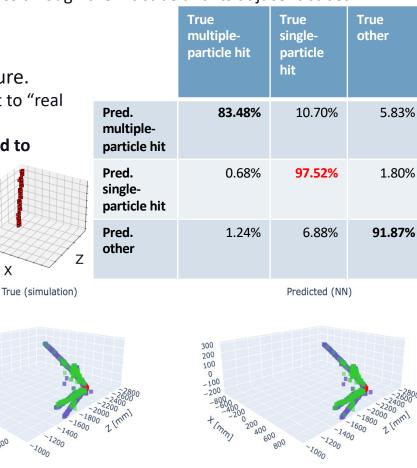
1400

-1200

-1000

- Other: mainly crosstalk. ٠
- Using a sparse U-Net-based neural network architecture.
 - Neutrino detector data is inherently sparse, in contrast to "real world" images (i.e., photos).
 - Standard CNNs are very inefficient when applied to sparse data.





0

-200

1600

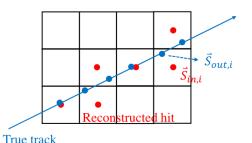
1400

-1200

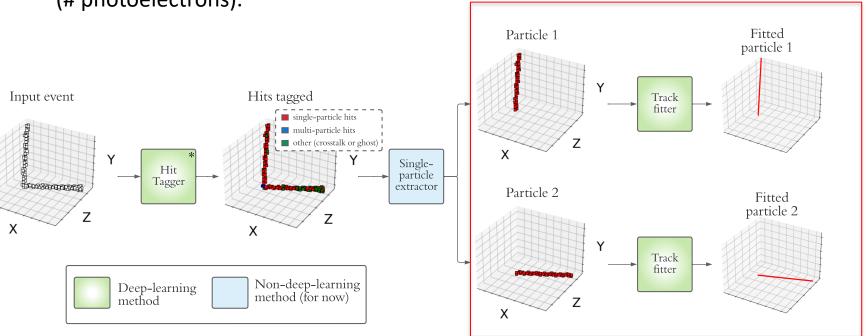
-1000

Method 2: Track fitter (2022)

- Based on track hits information, we want to use neural networks to predict node states along the track (particle trajectory points).
- For each state we consider 3D position and energy deposition (# photoelectrons).

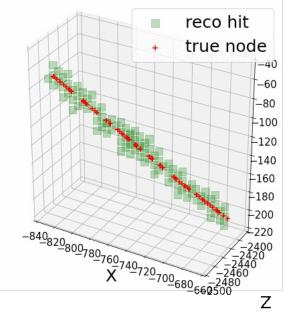


- Input hit state: $\vec{S}_{in,i} = (x_i, y_i, z_i, E_i), i = 1, \dots, N.$
- Output node state: $\vec{S}_{out,i} = (x_i, y_i, z_i), i = 1, \dots, N$.
- Use neural network to construct the map: $\{\vec{S}_{in,i}\} \rightarrow \{\vec{S}_{out,i}\}$



Sequential-importance-resampling particle filter (SIR-PF) implemented

- Method:
 - Use the training set to fill a histogram with the following variations of consecutive true nodes:
 - Δx, Δy, Δz, Δθ (in spherical coordinates), Δpe (photoelectrons).
 - Use the first hit as prior (particle gun).
 - In each step, the particles are propagated (resampled) along the track direction.
 - For each particle, the algorithm calculates the variation in x, y, z, θ, and pe, and assigns a likelihood based on the value of the corresponding bin in the previously filled histogram.
 - The next fitted node is the weighted average (using the likelihood) of the positions of the different particles.
 - Weighted average of forward and backward fitting.

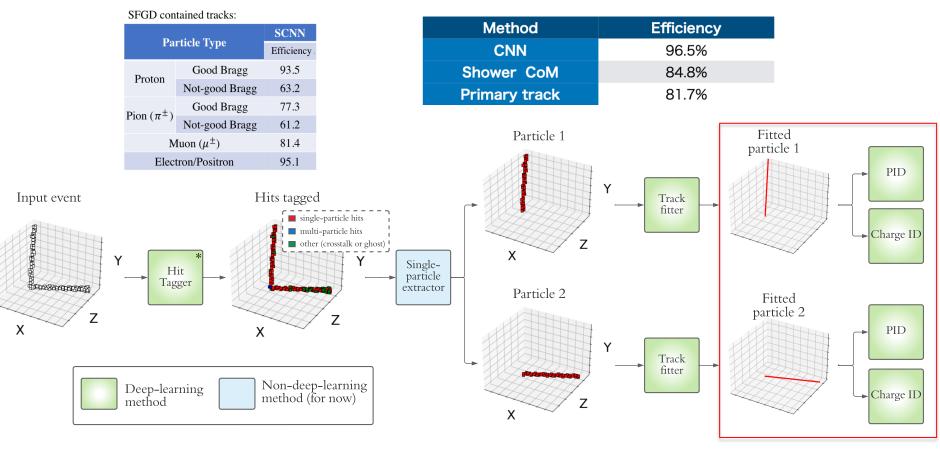


- Ran twice:
 - On all the hits (direct comparison with NNs).
 - On track-hits only (unrealistic bestposible scenario).

Y

Method 3: PID and Charge ID (2020)

- Approach:
 - Train two sparse neural networks for particle and charge identification (PID and charge ID).
 - PID results (left) and charge ID (right) using NNs outperform any other method used by the experiment.



Overview

- Introduction to neutrinos.
- Deep learning in neutrino experiments:
 - Deep Underground Neutrino Experiment (DUNE).
 - Tokai to Kamioka (T2K).
- Study of deep-learning workloads.
- Summary.

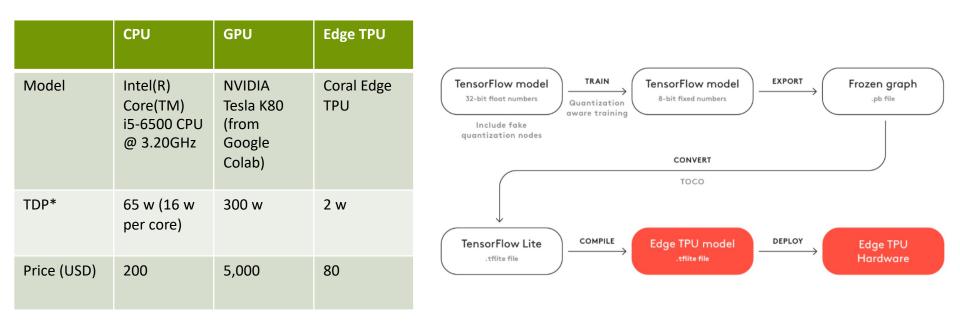
Performance study of deep-learning workloads

- Being able to run computationally efficient deep-learning workloads is becoming key for both science and industry.
 - In the case of the neutrino world, it would allow us to save time and money.
- For training, scaling the computation of deep-learning models the most reasonable option.
 - Many options: parallelise the computation, understand your GPU(s), avoid bottlenecks in the data I/O by having multiple processes preparing the inputs, etc.
- For inference, a possible approach is to run trained neural networks on deep-learning accelerator boards
 - In DUNE, we are exploring Google TPUs or FPGAs designed for running deeplearning workloads.

Fermilab - Google Collaboration

• Specifications:

• Generating the right model:



*Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload.

Results

• Tested using ResNet-50 on MNIST dataset:

	CPU (Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz)	GPU (NVIDIA Tesla K80)	Coral Edge TPU	
Categorical accuracy	97%	97%	95%	
Total inference time (10k images)	142 s	14.7 s	356 s	
Inference per image	14 ms	1.5 ms	35 ms	

• Tested using the DUNE CVN for neutrino identification (50 test images):

	CPU (Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz)	GPU (NVIDIA Tesla K80)	Coral Edge TPU	
Categorical accuracy	88%	86%	88%	
Total inference time (10k images)	22 s	1 s	5 s	
Inference per image	431 ms	20 ms	100 ms	

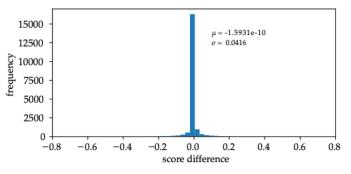
• **Costs:** $cost/inference = time/inference \times TDP \times cost of energy = K \times cost of energy$

	CPU (Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz)	GPU (NVIDIA Tesla K80)	Coral Edge TPU	•	GPU appears to be by far the far piece of hardware.
K factor (ResNet-50 on MNIST 56x56 images)	0.21	0.45	0.07	•	Edge TPU performs better with images Edge TPU showed the smallest
K factor (DUNE 500x500 images)	6.9	6	0.2		inference and CPU showed the cost per inference.

CERN Openlab - Micron Collaboration

- Hardware: SB-852.
 - FPGA-based unit from Micron.
 - Designed for running neural networks.
 - 64GB DDR4 SODIMM.
 - High-bandwidth / low-latency.
- Workflow:
 - Convert the network into ONNX.
 - Compile it using the Micron Framework.
 - Deploy into the inference engine.
- Future plans:
 - Measure time and energy.
 - Integrate the FPGA in the protoDUNE-SP DAQ.
 - Test how far we can go in the data selection or even in fast online reconstruction.

- Already ran the DUNE CVN on the FPGA.
 - Same results in GPU and FPGA.



~x2.6 time speedup with respect to the hardware we use in DUNE for inference.

Processor	Average time (ms)	STD	Min	Max
SB852	103.6074	0.5505	102.4658	105.0381
${\rm CPU}~({\rm i7\text{-}8750H})$	264.8545	0.8653	262.1692	267.2548

Overview

- Introduction to neutrinos.
- Deep learning in neutrino experiments:
 - Deep Underground Neutrino Experiment (DUNE).
 - Tokai to Kamioka (T2K).
- Study of deep-learning workloads.
- Summary.

Summary

- Deep learning algorithms provide many powerful mechanisms for processing input data from many different fields, including high-energy physics and neutrino experiments in particular.
- Several schemes using deep learning in neutrino experiments:
 - Standard CNNs for favour identification.
 - **GANs** for fast simulations.
 - **Sparse CNNs** for hit tagging, particle and charge identification.
 - Particle filters for particle tracking.
- Inference via edge computing: two current projects.
 - Using Google TPUs.
 - Using Micron FPGAs.
- Next steps: approach to computing systematic uncertainties (need to test the methods extensively to avoid biases):
 - Test on different statistically independent samples (also, samples from different generators).
 - Understand what the networks are learning (e.g., occlusion tests).

Machine learning and highperformance computing for neutrino oscillations

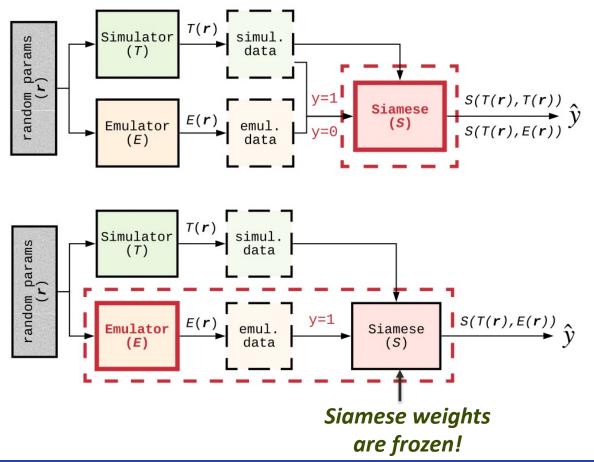
Saúl Alonso-Monsalve ETH Zurich

Fall Seminar Series National HPC Competence Centre The Cyprus Institute 18 October 2022

Backup Slides

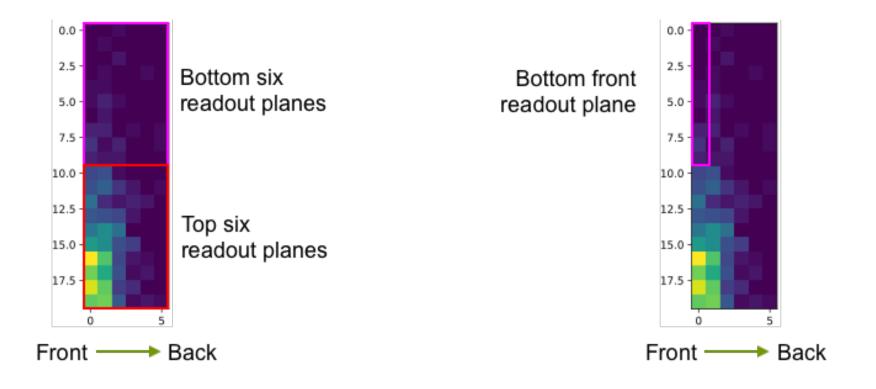
Model-Assisted GAN

- The **Siamese network** *S* is trained to learn the similarity of the simulated and emulated images.
- The **emulator** *E* is random params (r) trained to learn to create emulated images that mimic simulated images, so that *E* and the random params (r) simulator T generate an identical image from all possible parameter sets.



DUNE photon detector system: Image format

- The images are 20 x 6 pixels.
 - Two readout planes high, and six readout planes wide.

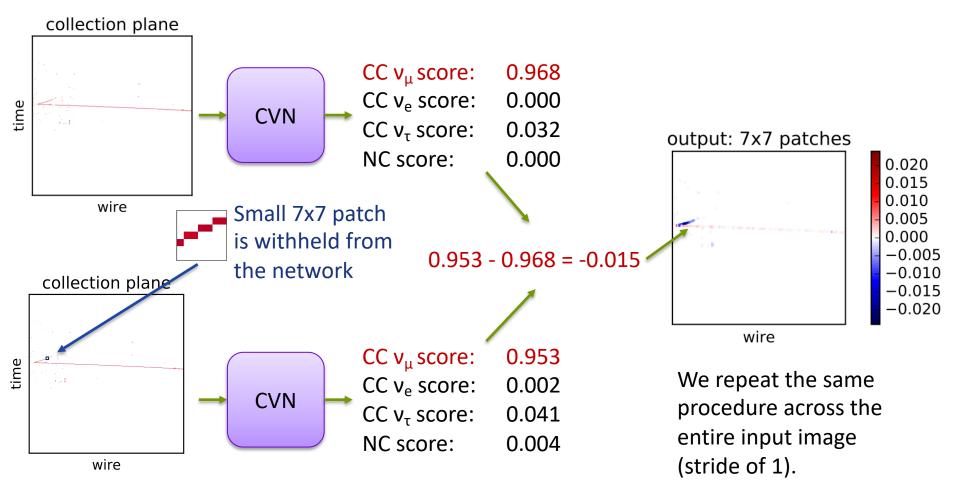


CVN occlusion tests

- Prove the robustness of the CVN by hiding portions of the input events.
 - I.e., changing a small patch of pixels to zeros.
- Use collection plane view only.
 - It is not a perfect test, but it gives us a good idea of what the CVN is using for classification.
- Compare the CVN scores before and after withholding a small patch of an input event from the network.
 - If the scores remain the same (or very close) means the CVN is robust against small image variations.
 - The score difference is placed into a separate map at the pixel corresponding to the centre of the patch.
- Repeat this procedure across the entire input image.

CVN occlusion tests: example

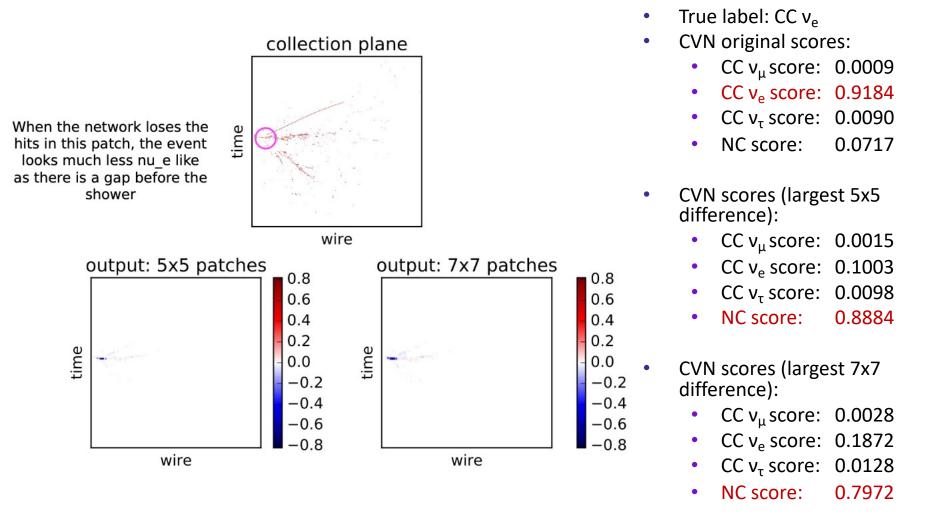
• Input (500x500 pixel image):



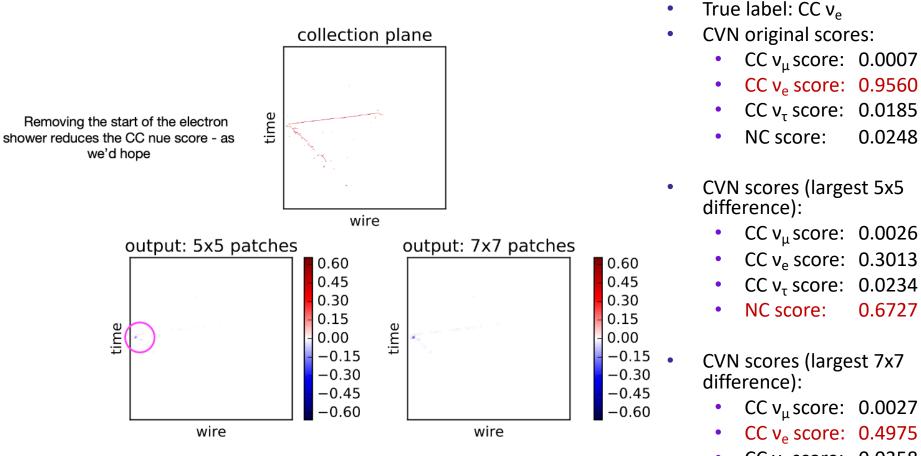
CVN occlusion tests

- We ran tests on a small sample (100 events).
- 5x5 pixel patches, and 7x7 pixel patches.
 - Applied to collection plane view only.
- Tests incredibly slow.
 - Not performing tests on patches that are already blank, but still needed to run the CVN hundreds (or event thousands) of times per event.
 - ~10 hours to run the tests on a NVIDIA V100 GPU.

CVN occlusion tests: event gallery (I)

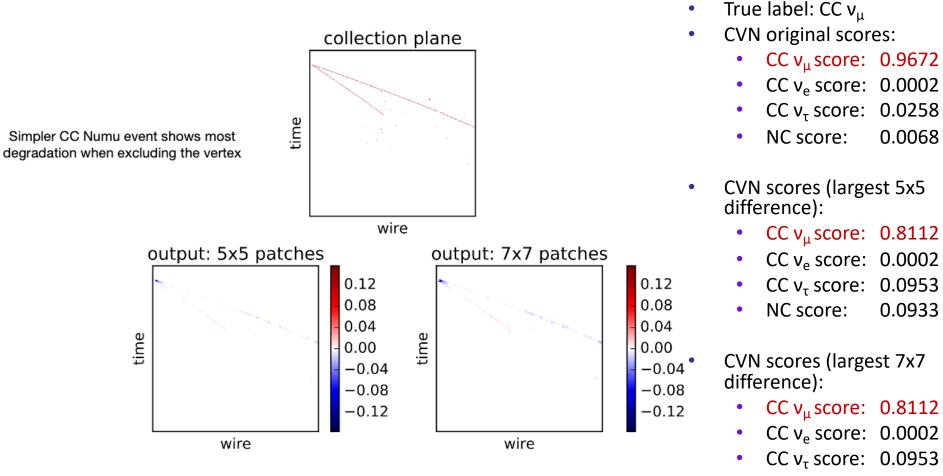


CVN occlusion tests: event gallery (II)



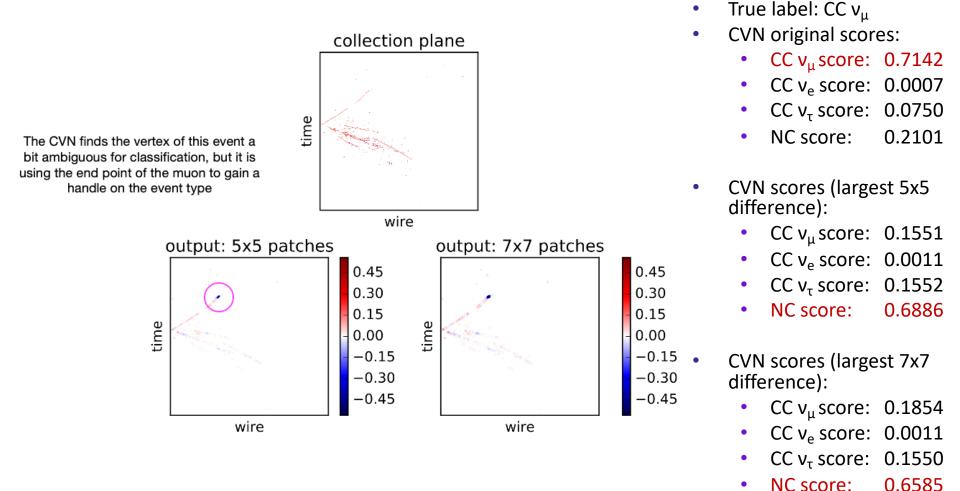
- CC v_{τ} score: 0.0358
- NC score: 0.4640

CVN occlusion tests: event gallery (III)



• NC score: 0.0933

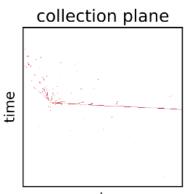
CVN occlusion tests: event gallery (IV)



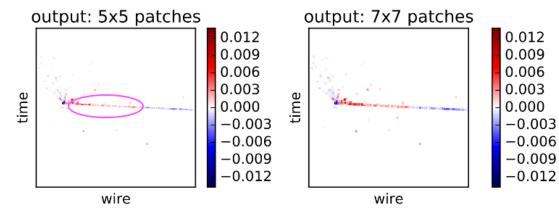
CVN occlusion tests: event gallery (V)

This event has very small changes, but we wanted to highlight an interesting feature:

Part of the muon track has a number of delta rays and diffuse activity close by. Excluding these regions *very slightly* improves the classification since it is less ambiguously a track.



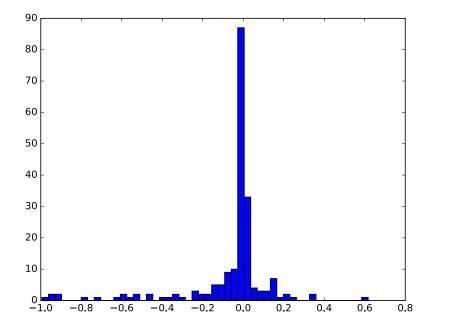
wire



- True label: CC v_{μ}
- CVN original scores:
 - CC v_{μ} score: 0.9614
 - CC v_e score: 0.0002
 - CC v_{τ} score: 0.0372
 - NC score: 0.0012
- CVN scores (largest 5x5 difference):
 - CC v_{μ} score: 0.9477
 - CC ν_e score: 0.0001
 - CC v_{τ} score: 0.0511
 - NC score: 0.0011
- CVN scores (largest 7x7 difference):
 - CC v_{μ} score: 0.9478
 - CC v_e score: 0.0002
 - CC v_{τ} score: 0.0510
 - NC score: 0.0010

CVN occlusion tests: histograms

 Largest score difference distribution (5x5 patches):



 Largest score difference distribution (7x7 patches):

