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Neutrinos
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• Neutrinos are light subatomic particles.
• They are present since the origin of the Universe.
• They are the second most abundant particle in the 

Universe, after photons.

• There are three types of neutrinos (and their corresponding antineutrinos), 
known as flavours.
• Electron neutrino (𝜈e), muon neutrino (𝜈μ), and tau neutrino (𝜈τ).
• They differ in the way they interact with other particles.

• Neutrinos oscillate*, meaning that hey can change their flavour.
• A neutrino generated with a specific flavour can later be measured to have a 

different flavour.

*2015 Nobel Prize in Physics. Takaaki Kajita, Art McDonald:
“For the discovery of neutrino oscillations, which shows that
neutrinos have mass.”



Mystery of neutrinos
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• Neutrinos are elementary particles belonging to the Standard Model (SM) of 
particle physics.

• The SM is one of the most successful theories in physics.
• It can be used to explain most of the experimental observations.
• However, it cannot explain the phenomenon of neutrino oscillations.

• Neutrinos can be the key to discover physics beyond the SM.
• Current measurements do not explain why the Universe is matter-dominated. 
• The difference in how matter and antimatter particles interact is known as CP-

violation.
• It is possible that neutrinos and antineutrinos oscillate differently, and a discovery 

of CP-violation in neutrino oscillations could be the catalyst to understanding the 
matter-antimatter asymmetry of the Universe.



Neutrino oscillation experiments
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• Long-baseline neutrino oscillation experiments use two detectors to 
characterise a beam of (anti)neutrinos.
• A near detector, located a few hundred metres away from the target that 

determines the original beam composition.
• A far detector, located several hundred kilometres away, that measures neutrinos 

flavour oscillations.

• Example: the T2K experiment in Japan.

Source: https://www.t2k-experiment.org/t2k/

https://www.t2k-experiment.org/t2k/


Some open challenges in neutrino physics
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• Maximise the CP-violation sensitivity: efficiently identify the signal 
interactions and have a powerful rejection of background events.
• Precise algorithms are needed to achieve very high signal efficiency and 

background rejection for event classification.

• Reconstruct particle tracks that are detectable in fine-grained detectors.
• It is necessary to develop mechanisms to fit and categorise the different 3D hits, 

so most of the ambiguities can be identified and rejected.

• Reduce the gap between simulated and experimental data.
• The detector design and optimisation are always guided by accurate and 

computationally-expensive simulations of the detector behaviour.
• Ensuring the robustness of algorithms against systematic uncertainties becomes a 

fundamental requirement.
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The DUNE experiment
• The Deep Underground Neutrino Experiment (DUNE) is a next-generation 

neutrino oscillation experiment.

• The far detector is 1300 kilometres from the neutrino beam source.
• It will consist of four 10 kt LArTPC detectors.

• Look for the appearance of electron (anti)neutrinos at the far detector.
• Measure CP-violation.
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Source: https://www.dunescience.org/

https://www.dunescience.org/


LArTPC
• Liquid-Argon Time Projection Chamber (LArTPC).

• This provides “images” of each neutrino interaction.
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Source: https://www.youtube.com/c/fermilab

https://www.youtube.com/watch?v=R5G1_hW0ZUA


Far detector data
• The Far Detectors contain three wire readout planes.

• This provides three “images” of each neutrino interaction.

• Official simulated electron neutrino interaction (signal).
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Each input image is 500 x 500 
pixels in size, corresponding to 
the images we get from the 
three wire readout planes.

First few layers treat the 
three views separately

Primary output:
Flavour identification



DUNE CVN overview (2018)
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Training and using the CVN
• Training details:

• Use ~10M images of simulated neutrino interactions.
• Tested on a fully independent sample (also ~10M images). 

• Trained for 15 epochs on 8 NVIDIA Tesla V100 GPUs, using Keras on top of 
TensorFlow (recently moved to TF2.0).
• SGD as optimiser; mini-batch size of 64 events, learning rate of 0.1, weight 

decay of 0.0001, and momentum of 0.9.
• Small data release of the code is available at https://github.com/DUNE/dune-cvn.

• Publication: B. Abi et al. (DUNE Collaboration), ``Neutrino interaction classification 
with a convolutional neural network in the DUNE far detector’’, ISSN: 2470-0029.
• https://doi.org/10.1103/PhysRevD.102.092003.

• The primary output results (flavour) were used in the official DUNE neutrino 
oscillation sensitivity analyses.
• DUNE Technical Design Report (TDR): arXiv:2002.03005.
• DUNE Long-baseline (LBL) analysis: https://doi.org/EPJC/S10052-020-08456-Z.
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https://github.com/DUNE/dune-cvn
https://doi.org/10.1103/PhysRevD.102.092003
https://arxiv.org/abs/2002.03005
https://doi.org/EPJC/S10052-020-08456-Z


Efficiencies
• Muon neutrinos: 

• Select all events that are more than 50% likely to be muon neutrinos.
• Over 90% selection efficiency in the flux peak.

• Electron neutrinos:
• Select all events that are more than 85% likely to be electron neutrinos.
• Over 90% selection efficiency in the flux peak.

Saúl Alonso-Monsalve 16

electron neutrino (𝜈e)muon neutrino (𝜈μ)



DUNE CP-violation sensitivity
• Same selection criteria:

• νe selection: P(νe) > 85%.
• νμ selection: P(νμ) > 50%.

• The solid lines show the 
median sensitivity.

• Results available at DUNE 
Long-baseline analysis 
article: 
https://doi.org/10.1140/e
pjc/s10052-020-08456-z

• Milestone for the 
experiment!
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https://doi.org/10.1140/epjc/s10052-020-08456-z


Light simulation using GANs
• Accurate simulations are critical to HEP experiments.

• They are typically computationally expensive.
• There is great interest in fast simulations.

• In the current DUNE photon detector simulation, the entire geometry 
is stored in memory.
• The idea is to have higher resolution and cover a larger volume, both of which 

will make it impossibly large.

• The approach is to try the fast-simulation segment from our Model-
Assisted GAN (MAGAN) to speed things up.
• Modification of a Generative adversarial network (GAN); details in backup.
• S. Alonso-Monsalve and L. H. Whitehead, "Image-Based Model Parameter 

Optimization Using Model-Assisted Generative Adversarial Networks," in IEEE 
Transactions on Neural Networks and Learning Systems, 2020. DOI: 
https://doi.org/10.1109/TNNLS.2020.2969327.
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https://doi.org/10.1109/TNNLS.2020.2969327
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Generative adversarial networks
• Generative adversarial networks (GANs) have been shown to 

produce fake images indistinguishable from true images.

arXiv:1812.04948

arXiv:1809.11096

19

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1809.11096


Application to the DUNE photon 
detector simulation (2019)

• The goal is to learn the whole simulation using a GAN.
• The model parameters are just (x,y,z).

• Output: photon detector system as a 20x6 pixel image, where each pixel gives the 
visibility of one photon detector.

• Trained on 3M images.
• Our implementation is similar to a conditional-GAN.

• However, instead of using a standard discriminator, we use a Siamese network in 
order to make sure the true (simulated) and the fake (emulated) images are the 
same for the same input parameters.

Saúl Alonso-Monsalve 20
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• We trained for roughly 17k iterations.
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• We trained for roughly 17k iterations.

• The simulation takes ~1 week to produce 1M images, while the GAN takes less 
than two minutes to produce the same number of images on a V100 GPU.

Example Image II
Ti

m
e
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T2K
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• Tokai to Kamioka (T2K) is a long-baseline neutrino experiment in Japan, and 
is studying neutrino oscillations.

• Super Kamiokande (far detector): very large cylinder of ultra-pure water, 
detects muon neutrino after oscillating.

• ND280 (near detector): measures the number of muon neutrinos in the beam 
before any oscillations occur and characterizes the physical properties of the 
beam.
• In the near future, an upgrade of the ND280 is planned.



T2K’s ND 280 upgrade: SuperFGD detector
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• Full active fine-grained detector (FGD) with three views: SuperFGD.
• Optically independent cubes: spatial localization of scintillation light.
• Lower momentum threshold: 1 single hit gives immediately XYZ.
• Example of a simulated muon neutrino:
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• Most steps of the reconstruction in the SFGD can be done using deep 
learning:
• Method 1: Hit tagging (identify different kinds of hits).
• Method 2: Track fitting (adjust the particle trajectory)
• Method 3: Identify the particle and the charge.

• The algorithms are implemented in PyTorch and run on an NVIDIA A100 GPU.

Reconstruction-chain using deep learning

Input event

H it 
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Single- 
particle 

extractor

H its tagged
single-particle hits
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Charge ID

PID

Charge ID
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Method 1: Hit tagging (2020)
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• Classify each individual hit as: 
• Single-particle hit: only one particle passes through the hit cube and no other tracks pass through its 

adjacent cubes
• Multiple-particle hit: at least two different particles pass through the hit cube and its adjacent cubes.
• Other: mainly crosstalk.

Dense 
convolution

Sparse 
convolution

• Using a sparse U-Net-based neural network architecture.
• Neutrino detector data is inherently sparse, in contrast to “real 

world” images (i.e., photos). 
• Standard CNNs are very inefficient when applied to 

sparse data.

“Dense” image “Sparse” image

https://link.aps.org/doi/10.1103/
PhysRevD.102.092003

https://www.britannica.com/



Saúl Alonso-Monsalve 28

Method 1: Hit tagging (2020)
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• Classify each individual hit as: 
• Single-particle hit: only one particle passes through the hit cube and no other tracks pass through its 

adjacent cubes
• Multiple-particle hit: at least two different particles pass through the hit cube and its adjacent cubes.
• Other: mainly crosstalk.

• Using a sparse U-Net-based neural network architecture.
• Neutrino detector data is inherently sparse, in contrast to “real 

world” images (i.e., photos). 
• Standard CNNs are very inefficient when applied to 

sparse data.
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1.24% 6.88% 91.87%
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Method 2: Track fitter (2022)
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• Based on track hits information, 
we want to use neural networks 
to predict node states along the 
track (particle trajectory points).

• For each state we consider 3D 
position and energy deposition 
(# photoelectrons).
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Sequential-importance-resampling particle filter (SIR-PF) 
implemented

30

• Method:
• Use the training set to fill a histogram with the

following variations of consecutive true nodes:
• Δx, Δy, Δz, Δθ (in spherical coordinates), Δpe 

(photoelectrons).
• Use the first hit as prior (particle gun).
• In each step, the particles are propagated 

(resampled) along the track direction.
• For each particle, the algorithm calculates the 

variation in x, y, z, θ, and pe, and assigns a 
likelihood based on the value of the corresponding
bin in the previously filled histogram.
• The next fitted node is the weighted average 

(using the likelihood) of the positions of the 
different particles.

• Weighted average of forward and backward fitting.

• Ran twice:
• On all the hits 

(direct comparison 
with NNs).

• On track-hits only 
(unrealistic best-
posible scenario).



Method 3: PID and Charge ID (2020)
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• Approach: 
• Train two sparse neural networks for particle and charge identification (PID and charge ID).
• PID results (left) and charge ID (right) using NNs outperform any other method used by the 

experiment.
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Performance study of deep-learning 
workloads
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• Being able to run computationally efficient deep-learning workloads is 
becoming key for both science and industry.
• In the case of the neutrino world, it would allow us to save time and money.

• For training, scaling the computation of deep-learning models the most 
reasonable option.
• Many options: parallelise the computation, understand your GPU(s), avoid 

bottlenecks in the data I/O by having multiple processes preparing the inputs, 
etc.

• For inference, a possible approach is to run trained neural networks on 
deep-learning accelerator boards
• In DUNE, we are exploring Google TPUs or FPGAs designed for running deep-

learning workloads.



Fermilab - Google Collaboration

• Specifications:
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*Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when 
operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. 

CPU GPU Edge TPU

Model Intel(R) 
Core(TM) 
i5-6500 CPU 
@ 3.20GHz 

NVIDIA 
Tesla K80 
(from 
Google 
Colab)

Coral Edge 
TPU 

TDP* 65 w (16 w 
per core) 

300 w 2 w 

Price (USD) 200 5,000 80 

• Generating the right model:



• Tested using ResNet-50 on MNIST dataset:

• Costs:  𝑐𝑜𝑠𝑡/𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑡𝑖𝑚𝑒/𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 × 𝑇𝐷𝑃 × 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 = 𝐾 × 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦

Results
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CPU (Intel(R) 
Core(TM) i5-6500 
CPU @ 3.20GHz )

GPU (NVIDIA 
Tesla K80)

Coral 
Edge 
TPU

Categorical 
accuracy

97% 97% 95%

Total 
inference 
time (10k 
images)

142 s 14.7 s 356 s

Inference 
per image

14 ms 1.5 ms 35 ms

• Tested using the DUNE CVN for neutrino 
identification (50 test images):

CPU (Intel(R) 
Core(TM) i5-6500 
CPU @ 3.20GHz )

GPU (NVIDIA 
Tesla K80)

Coral 
Edge 
TPU

Categorical 
accuracy

88% 86% 88%

Total 
inference 
time (10k 
images)

22 s 1 s 5 s

Inference 
per image

431 ms 20 ms 100 ms

CPU (Intel(R) Core(TM) 
i5-6500 CPU @ 3.20GHz )

GPU (NVIDIA 
Tesla K80)

Coral Edge 
TPU

K factor 
(ResNet-50 on 
MNIST 56x56 
images)

0.21 0.45 0.07

K factor (DUNE 
500x500 
images) 

6.9 6 0.2

• GPU appears to be by far the fastest 
piece of hardware. 

• Edge TPU performs better with bigger 
images

• Edge TPU showed the smallest cost per 
inference and CPU showed the biggest 
cost per inference. 



CERN Openlab - Micron Collaboration
• Hardware: SB-852.

• FPGA-based unit from Micron.
• Designed for running neural networks.
• 64GB DDR4 SODIMM.
• High-bandwidth / low-latency.

• Workflow:
• Convert the network into ONNX. 
• Compile it using the Micron Framework.
• Deploy into the inference engine.
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• Already ran the DUNE CVN on the 
FPGA.
• Same results in GPU and FPGA.

• Future plans: 
• Measure time and energy.
• Integrate the FPGA in the protoDUNE-SP DAQ.
• Test how far we can go in the data selection or even in fast online reconstruction.

• ∼x2.6 time speedup with respect
to the hardware we use in DUNE
for inference.
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Summary
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• Deep learning algorithms provide many powerful mechanisms for processing input 
data from many different fields, including high-energy physics and neutrino 
experiments in particular.

• Several schemes using deep learning in neutrino experiments:
• Standard CNNs for favour identification.
• GANs for fast simulations.
• Sparse CNNs for hit tagging, particle and charge identification.
• Particle filters for particle tracking.

• Inference via edge computing: two current projects.
• Using Google TPUs.
• Using Micron FPGAs.

• Next steps: approach to computing systematic uncertainties (need to test the methods 
extensively to avoid biases):
• Test on different statistically independent samples (also, samples from different 

generators). 
• Understand what the networks are learning (e.g., occlusion tests).
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Model-Assisted GAN
• The Siamese network S is trained to learn the similarity of the 

simulated and emulated images.

• The emulator E is 
trained to learn to 
create emulated 
images that mimic 
simulated images, so 
that E and the 
simulator T generate 
an identical image 
from all possible 
parameter sets.

Siamese weights 
are frozen!

Saúl Alonso-Monsalve



DUNE photon detector system: 
Image format

• The images are 20 x 6 pixels.
• Two readout planes high, and six readout planes wide.

Saúl Alonso-Monsalve 42



CVN occlusion tests
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• Prove the robustness of the CVN by hiding portions of the input 
events.
• I.e., changing a small patch of pixels to zeros.

• Use collection plane view only.
• It is not a perfect test, but it gives us a good idea of what the CVN is using for 

classification.

• Compare the CVN scores before and after withholding a small patch of 
an input event from the network.
• If the scores remain the same (or very close) means the CVN is robust against 

small image variations.
• The score difference is placed into a separate map at the pixel corresponding 

to the centre of the patch.

• Repeat this procedure across the entire input image.



• Input (500x500 pixel image):

CVN occlusion tests: example
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CVN

CC νμ score: 0.968
CC νe score: 0.000
CC ντ score: 0.032
NC score: 0.000

CVN

CC νμ score: 0.953
CC νe score: 0.002
CC ντ score: 0.041
NC score: 0.004

Small 7x7 patch 
is withheld from 
the network 0.953 - 0.968 = -0.015 

We repeat the same 
procedure across the 
entire input image 
(stride of 1).



• We ran tests on a small sample (100 events).

• 5x5 pixel patches, and 7x7 pixel patches.
• Applied to collection plane view only.

• Tests incredibly slow.
• Not performing tests on patches that are already blank, but still needed to 

run the CVN hundreds (or event thousands) of times per event.
• ~10 hours to run the tests on a NVIDIA V100 GPU.

CVN occlusion tests
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CVN occlusion tests: event gallery (I)
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• True label: CC νe
• CVN original scores: 

• CC νμ score: 0.0009
• CC νe score: 0.9184
• CC ντ score: 0.0090
• NC score: 0.0717

• CVN scores (largest 5x5 
difference):
• CC νμ score: 0.0015
• CC νe score: 0.1003
• CC ντ score: 0.0098
• NC score: 0.8884

• CVN scores (largest 7x7 
difference):
• CC νμ score: 0.0028
• CC νe score: 0.1872
• CC ντ score: 0.0128
• NC score: 0.7972



CVN occlusion tests: event gallery (II)
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• True label: CC νe
• CVN original scores: 

• CC νμ score: 0.0007
• CC νe score: 0.9560
• CC ντ score: 0.0185
• NC score: 0.0248

• CVN scores (largest 5x5 
difference):
• CC νμ score: 0.0026
• CC νe score: 0.3013
• CC ντ score: 0.0234
• NC score: 0.6727

• CVN scores (largest 7x7 
difference):
• CC νμ score: 0.0027
• CC νe score: 0.4975
• CC ντ score: 0.0358
• NC score: 0.4640



CVN occlusion tests: event gallery (III)

Saúl Alonso-Monsalve 48

• True label: CC νμ
• CVN original scores: 

• CC νμ score: 0.9672
• CC νe score: 0.0002
• CC ντ score: 0.0258
• NC score: 0.0068

• CVN scores (largest 5x5 
difference):
• CC νμ score: 0.8112
• CC νe score: 0.0002
• CC ντ score: 0.0953
• NC score: 0.0933

• CVN scores (largest 7x7 
difference):
• CC νμ score: 0.8112
• CC νe score: 0.0002
• CC ντ score: 0.0953
• NC score: 0.0933



CVN occlusion tests: event gallery (IV)

Saúl Alonso-Monsalve 49

• True label: CC νμ
• CVN original scores: 

• CC νμ score: 0.7142
• CC νe score: 0.0007
• CC ντ score: 0.0750
• NC score: 0.2101

• CVN scores (largest 5x5 
difference):
• CC νμ score: 0.1551
• CC νe score: 0.0011
• CC ντ score: 0.1552
• NC score: 0.6886

• CVN scores (largest 7x7 
difference):
• CC νμ score: 0.1854
• CC νe score: 0.0011
• CC ντ score: 0.1550
• NC score: 0.6585



CVN occlusion tests: event gallery (V)

Saúl Alonso-Monsalve 50

• True label: CC νμ
• CVN original scores: 

• CC νμ score: 0.9614
• CC νe score: 0.0002
• CC ντ score: 0.0372
• NC score: 0.0012

• CVN scores (largest 5x5 
difference):
• CC νμ score: 0.9477
• CC νe score: 0.0001
• CC ντ score: 0.0511
• NC score: 0.0011

• CVN scores (largest 7x7 
difference):
• CC νμ score: 0.9478
• CC νe score: 0.0002
• CC ντ score: 0.0510
• NC score: 0.0010



CVN occlusion tests: histograms

Saúl Alonso-Monsalve 51

• Largest score difference 
distribution (5x5 patches):

• Largest score difference 
distribution (7x7 patches):


