Post-processing and visualizing large climate model data: radionuclide dispersion modelling and High Performance Computing (HPC)

CaSToRC EuroCC Seminar Talk

Marco Miani - Compuational Support Specialist October 26th. 2021

m.miani@cyi.ac.cy

EPD / CARE-C - The Cyprus Institute

The content of this talk

1. Introduction

- 2. Large climate data: structure, retrieval and processing
- 3. Visualizing climate data
- 4. High Performance Computing (HPC): the modelling of radionuclide dispersion using FLEXPART

Introduction

Computational Support Specialist – Climate and Atmosphere Research Center (CARE-C)

Research Topics

- Atmospheric and climate/earth modelling
- Emission inventories, modelling and analysis
- Dynamical down-scaling of climate change and weather extremes
- Air quality and dust modelling

Responsibilities

- Maintenance and management of various geophysical data-sets
- Statistical analysis for the study of temporal and spatial variations of atmospheric and climate data
- Data science and visualisation
- Presentation and interpretation of scientific results

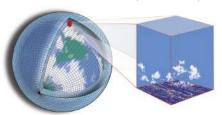
What turns data into actual climate data?

The **short-term** state of the atmosphere is named weather (e.g., temperature, precipitation, humidity, cloudiness, wind, et al.), and it can vary from minute to minute and location to location.

Climate is a description of the **long-term** pattern of weather conditions at a location. The expression "long-term" usually means 30 years or more, believed to be a good length of time to establish the usual range of conditions at a given location throughout the year.

The difference between weather variability and long-term climate trends is like the difference between the path of a dog and the path of the person walking the dog

Adapted from: https://www.climate.gov/maps-data/primer/comparing-climate-and-weather
Animation: https://youtu.be/e0vj-0im0Lw


Large climate data: structure,

retrieval and processing

Climate data: numerical model vs. real-world observations

Numerical model

- 361×740 grid points (0.25 deg) (e.g.: ds083.3, NCEP, [1])
- 34 vertical levels
- 6-hourly output, over 15 yrs.
- multiple quantities (T, p, u, ...)

In-situ observations

- daily to hourly data
- increasing coverage
- smart devices are being progressively used

Extremely large data-sets (\approx peta-bytes): special binary **formats** needed.

Climate Data: Conventional Formats

Selection of common formats

HDF4, HDF5 **H**ierarchical **D**ata **F**ormat (NASA)

- → GRIB1, GRIB2
 Gridded Binary
 (World Meteorological Organization)
- ightarrow netCDF

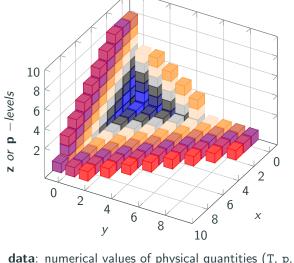
Network **C**ommon **D**ata **F**orm (National Center for Atmospheric Research)

Features of binary file:

- non human readable
- sequence of bytes
- memory efficient
- quickly accessible
- cross-platform
- non proprietary format

Focus of this talk: effective post-processing and visualization of large-scale, model-generated climate data. The above format(s) greatly help when post-processing!

netCDF format is array-oriented:


- **Self-Describing**: a netCDF file includes information about the data it contains, i.e.: attributes or metadata. (See: [2])
- **Portable**: a netCDF file can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.
- Scalable: small subsets of large datasets in various formats may be accessed efficiently through netCDF interfaces, even from remote servers.
- Appendable: Data may be appended to a properly structured netCDF file without copying the dataset or redefining its structure.

Adapted from: [3] (www.unidata.ucar.edu/software/netcdf/) More sources: [2], [4], [5].

netCDF structure: data and metadata

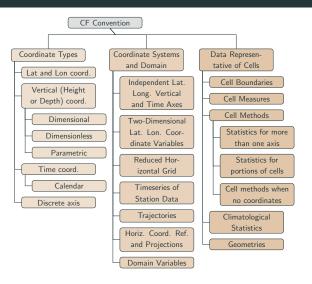
Example of 3-D array

metadata:

alphanumeric description; "data describing data"

(sub)fields such as:

- size
- dimensions
- type
- unit & time ref
- space/time convention


collection of self-describing, portable objects (See: [4])

data: numerical values of physical quantities (T, p, v,...)

Data describing data - ncdump

```
# Output file generated with FLEXPART dispersion model
ncdump -h my_netCDF_FileName.nc # "-h" stands for "header only"
dimensions:
   time = UNLIMITED ; // (336 currently)
   longitude = 200; # nr. of longitudes (gridded)
   latitude = 280; # nr. of latitudes (gridded)
   height = 2 ; # nr. of vertical levels
   numspec = 1 ; # number of chem. species (i.e. tracers)
   pointspec = 1 ; # nr. of release point(s)
   nchar = 45 ; # string lenght
   numpoint = 1 ; # number of receptor(s)
variables:
   int time(time) :
                           = "seconds since 2020-12-01 00:00" :
       time:units
       time:calendar
                             = "proleptic_gregorian";
   float longitude(longitude);
       longitude:long_name = "longitude in degree east";
       longitude:axis
                      = "Lon" :
       longitude:units = "degrees_east";
       longitude:standard_name = "grid_longitude" ;
       longitude:description = "grid cell centers";
```

Climate and Forecast (CF) Convention

List of "Software that 'understand' CF" - https://cfconventions.org/software.html
Online "CF checker" available - https://pumatest.nerc.ac.uk/cgi-bin/cf-checker.pl

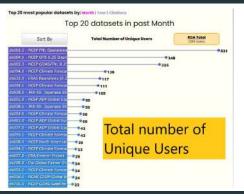
FAIR (climate) data

Findable

Machine-readable metadata are essential for automatic discovery of data-sets and services

Accessible

How can data be accessed, possibly including authentication and authorisation

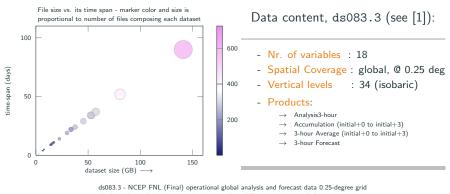

Interoperable

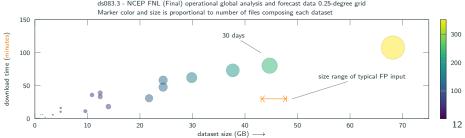
the data need to interoperate with applications or workflows for analysis, storage, and processing

Reusable

Metadata and data should be well-described so that they can be replicated and/or combined in different settings

The Research Data Archive (RDA) – free access big data center




```
#control file manually, with custom dates, variables, levels and products
idx = rc.submit('controlFile.ctl') #submit a request, and store index
rc.get_status() #check if ready, or more can be submitted
rc.download(idx) #download that index, when ready
```

Eg. datasets: Atmosphere ● Ocean ● Land cover ● Ice sheet cover ● Agriculture

NCAR-UCAR: https://rda.ucar.edu/ - Access requires creation of a user profile (e.g., affiliation and role)

The Research Data Archive (RDA) – the actual content

The fastest pistol climate operator in the west

- cdo* Climate Data Operator
 - origin: MPI-M, Hamburg, Germany
 - type of data: grib, netCDF
- eccodes*:
 - origin: ECMWF
 - type of data: GRIB 1&2; BUFR 1&2
- wgrib2*:
 - origin: NOAA, Climate Prediction Center
 - type of data: grib2

Encode and decode. Open source – *Python interface

E.g. of other tools:

- nco: netCDF opeartors manipulates & analyzes netCDF formats.
- GeoCAT Geoscience Community Analysis Toolkit: collection of Python tools related to NCAR Command Language – "swiss knife"

The spirit of open source & open science! More references: [9], [10]

Visualizing climate data

NCL - Seasonal mean for radionucleide dispersion

Extracting the near-surface field from initial volume of data:

$$[^{131}I]_{(t_i,x,y,\mathbf{z_0})} = [^{131}I]_{(t_i,x,y,\mathbf{z=0})}$$

Definition of Relative Risk Index (RRi), by normalising the field:

$$RRi_{i} = \frac{[^{131}I]_{(t_{i},x,y,z_{0})}}{\max([^{131}I]_{t_{i}})_{(x,y,z_{0})}}$$

Extraction of monthly mean:

$$<[^{131}I]>_{montly}=\sum_{i=1}^{nx}\sum_{j=1}^{ny}\sum_{k=1}^{nt}...$$
 if $j \in [1,2,3]$

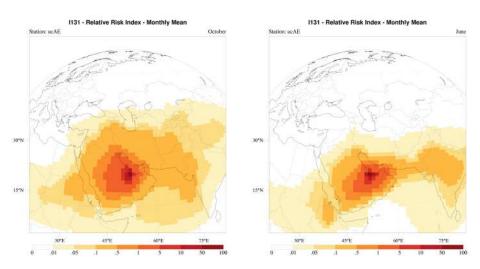
NCL - Seasonal mean for radionucleide dispersion

Extracting the near-surface field from initial volume of data:

$$[^{131}I]_{(t_i,x,y,\mathbf{z_0})} = [^{131}I]_{(t_i,x,y,\mathbf{z=0})}$$

Definition of Relative Risk Index (RRi), by normalising the field:

$$RRi_{i} = \frac{[^{131}I]_{(t_{i},x,y,z_{0})}}{\max([^{131}I]_{t_{i}})_{(x,y,z_{0})}}$$

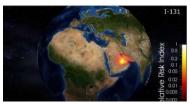

Extraction of monthly mean:

$$<[^{131}I]>_{montly}=\sum_{i=1}^{nx}\sum_{j=1}^{ny}\sum_{k=1}^{nt}...$$
 if $j \in [1,2,3]$

Meanwhile in cdo (either command line or Python, ≈ 2 sec/step):

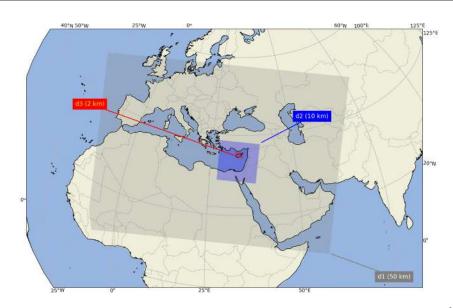
- 1. cdo -sellevel, 34 -selname, I131 infile outfile
- 2. cdo.expr('norm = I131 / fldmax(I131)'), infile outfile)
- 3. cdo monmean infile outfile
- 4. cdo -0 -P 4 -f nc4 -z zip_5 -copy infile outfile

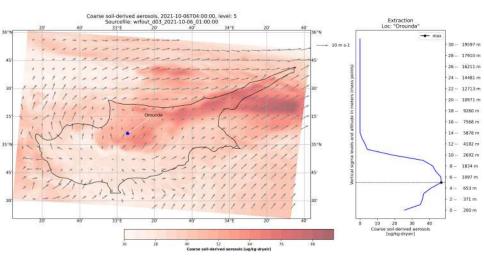
High-quality (publication ready) maps



Full control over all possible parameters: land boundaries, color-scale, general appearance, output format, etc... – Python compatible!

Animating results – Paraview


PARAVIEW ([11]) is an open source software for creating high quality animations of scientific data. Link: https://youtu.be/Ks15emMSh7E



- gas
- Half life-time: \approx 8 days
- residing in the atmosphere

- aerosol, accumulation (20 yrs)
- Half life-time: \approx 30 yrs decay
- deposited on the ground

WRF model - dust plumes - maps and vertical profiles

Aim – use high-resolution forecast over Cyprus to optimize UAV flight plan with USRL \longrightarrow **Altitude? Trend? Time-window?**

High Performance Computing (HPC): the modelling of radionuclide dispersion using

FLEXPART

"Release from a hypothetical accident in Akkuyu Nuclear P.P."

Conclusions: Topographic factor was found to play a crucial role: "different meteorological data sets are likely to reveal different results even if all other parameters are kept constant" -

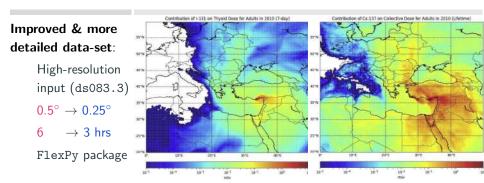
Bilgiç and Gunduz, Journal of Environmental Radioactivity, 2020 ([12]).

Improved & more detailed data-set:

High-resolution input (ds083.3)

 $0.5^{\circ} \rightarrow 0.25^{\circ}$

 $6 \rightarrow 3 \text{ hrs}$


FlexPy package

old, improved

"Release from a hypothetical accident in Akkuyu Nuclear P.P."

Conclusions: Topographic factor was found to play a crucial role: "different meteorological data sets are likely to reveal different results even if all other parameters are kept constant" -

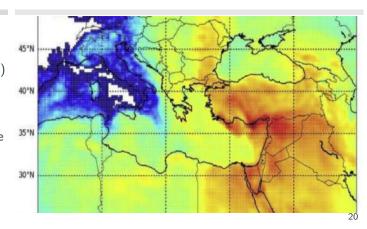
Bilgiç and Gunduz, Journal of Environmental Radioactivity, 2020 ([12]).

old, improved

"Release from a hypothetical accident in Akkuyu Nuclear P.P."

Conclusions: Topographic factor was found to play a crucial role: "different meteorological data sets are likely to reveal different results even if all other parameters are kept constant" -

Bilgiç and Gunduz, Journal of Environmental Radioactivity, 2020 ([12]).


Expansion:

High-resolution input (ds083.3)

 $0.5^{\circ}
ightarrow 0.25^{\circ}$

 $6 \rightarrow 3 \text{ hrs}$

FlexPy package

Future objectives - Dispersion modelling @ Akkuyu N.P.P.

Objective 1

Create a daily/weekly/seasonal climatology based on multi-year input data. Quickly grab available results/data from the shelf and hand over to policy makers and decision takers...

Objective 2

Reference runs to be compared with available bibliography. Pure research-related speculations...

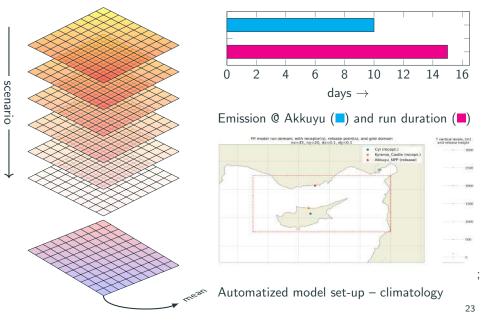
Objective 3

Reference climatology for future risk assessment – web based services? Dissemination etc...

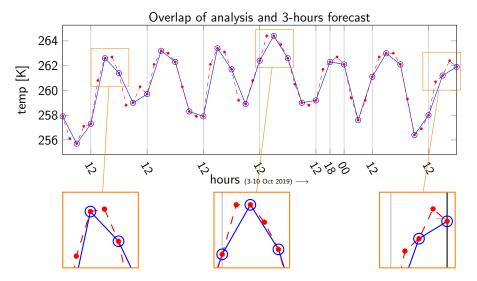
FLEXPART Lagrangian Dispersion model - v 10.4

- Lagrangian particle dispersion models (LPDM) simulate atmospheric transport & turbulent mixing of gases & aerosols, as well as dust!
- Loss processes (radioactive decay, chemical loss, dry/wet deposition)
 may affet particles and their mass.
- Importance of LPDMs: ability to run backward in time: trajectories.
 Inverse modelling and identification of sources!
- Computational time scales linearly with number of particles used.

Particle trajectory

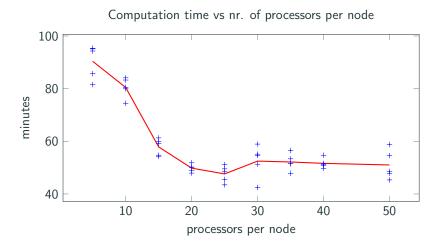

$$\mathbf{X},\mathbf{v}
ightarrow$$
 position & wind vector $t,\Delta t
ightarrow$ time and its increment

$$\mathbf{X}(t+\Delta t) = \mathbf{X}(t) + \mathbf{v}(x,t) \cdot \Delta t$$


$$m(t + \Delta t) = m(t) \exp(-\Delta t/\beta)$$

References: [13], [14], [15].

FLEXPART – Climatology based on multi-year input: set-up

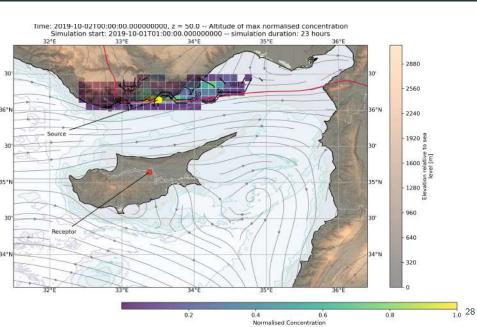


Improving temporal resolution with ds083.3: inclusion of f+03

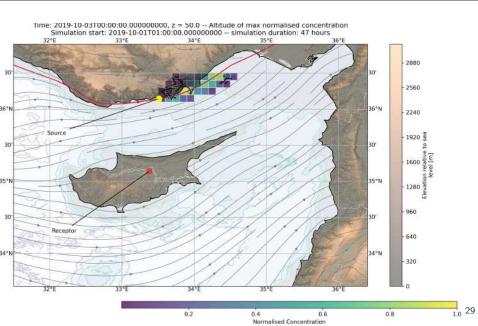
Based on an improved version of Global Forecast System (gfs)

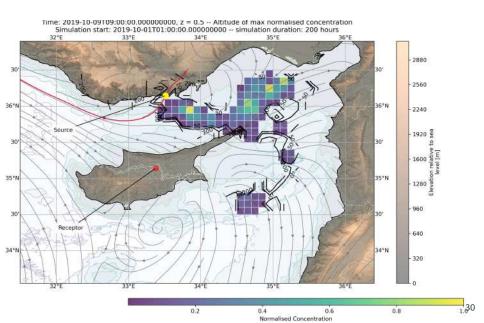
Performance and CPU resources

Cyl HPC facility – using AMD "Epyc" cluster.

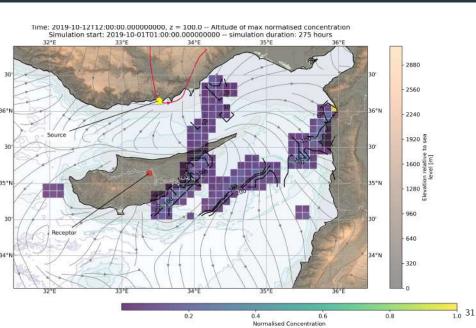

Inputs - COMMAND file [truncated for brevity]

```
* Input file for the Lagrangian particle dispersion model FLEXPART
                  Generated with FlexPy
************************
& COMMAND
 LDIRECT =
                       1, ! Sim. direction 1 (forward), -1 (backward)
IBDATE=
                20191001. ! Start date of the simulation
IBTIME=
                  000000, ! Start time of the simulation
IEDATE=
                20191015, ! End date of the simulation
TETIME=
                  230000. ! End time of the simulation
LOUTSTEP=
                    3600, ! average concentr. calculated every LOUTSTEP (s
LOUTAVER =
                    3600, ! Interval of output averaging (s)
                     900, ! Interval of output sampling (s),
LOUTSAMPLE =
                99999999, ! Interval of particle splitting (s)
TTSPLTT=
LSYNCTIME=
                     900, ! All processes synchronized to this
                       9, ! Output type: [1] mass 2] pptv 3] 1&2 4] plume 5] 1&4
IOUT=
IPOUT=
                       1, ! Particle position output: 0]no 1]every output
I.SUBGRID=
                       O, ! Increase of ABL heights due to sub-grid scale
LCONVECTION =
                       1. ! Switch for convection parameterization:
                       0, ! Switch for calculation of age spectra
I.AGESPECTRA =
IFLUX =
                       O, ! Output of mass fluxes through output grid box
                       0, ! Switch for domain-filling, if limited-area par
MDOMAINFILL=
                       1. ! Unit for source : [1] mass 2] mass mixing ratio
IND SOURCE=
                       1, ! Unit for receptor: [1] mass 2] mass mixing ratio
IND RECEPTOR=
                       0, ! Quasi-Lagrangian mode to track individual numb
 MQUASILAG=
```

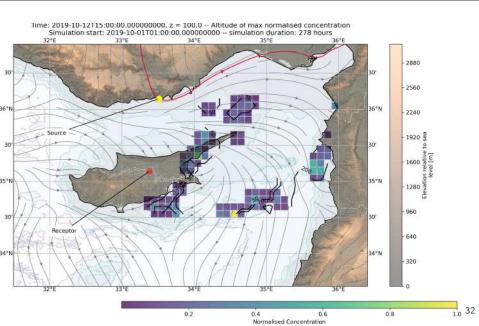

OUTPUTs – **OUTGRID** file [truncated for brevity]


```
31.50000 GEOGRAFICAL LONG. OF LOWER LEFT CORNER OF OUTPUT GRID
OUTLONLEFT (left boundary of first grid cell - non its centre)
34.50000 GEOGRAFICAL LAT. OF LOWER LEFT CORNER OF OUTPUT GRID
OUTLATLOWER (lower boundary of first grid cell - non its centre)
45
             NUMBER OF GRID Pts IN X DIRECTION (=No. of cells+1)
NUMXGRID
20
      NUMBER OF GRID Pts IN Y DIRECTION (=No. of cells+1)
NUMYGRID
0.10000
        GRID DISTANCE IN X DIRECTION
DXUITIUNX
0.10000
        GRID DISTANCE IN Y DIRECTION
DYOUTLAT
          NUMBER OF LEVELS
LEVEL 1 HEIGHT OF LEV (UPPER BOUNDARY)
500
LEVEL 2 HEIGHT OF LEV (UPPER BOUNDARY)
1000
LEVEL 3 HEIGHT OF LEV (UPPER BOUNDARY)
1500
LEVEL 4 HEIGHT OF LEV (UPPER BOUNDARY)
```

FLEXPART results - lodine - normalised concentration 1day



FLEXPART results - lodine - normalised concentration 2 days



FLEXPART results – **lodine** – normalised concentration 2/3

FLEXPART results - lodine - normalised concentration 3/3

End of Presentation

Questions are welcome
Backup slides on following pages

Marco Miani — Computational Support Specialist

Climate and Atmosphere Research Center (CARE-C)

८ +357 22 397 561 — **■** m.miani@cyi.ac.cy

Web: cyi.ac.cy — emme-care.cyi.ac.cy

References i

- [1] National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce, "NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids," Boulder CO, 2015. [Online]. Available: https://doi.org/10.5065/D65Q4T4Z
- [2] NOAA, "World Ocean Database ragged array netCDF format." [Online]. Available: https://www.nodc.noaa.gov/OC5/WOD/netcdf_descr.html
- [3] UniData.ucar.edu, "Network common data form (netcdf)." [Online]. Available: https://www.unidata.ucar.edu/software/netcdf/
- [4] netCDF, "An introduction to netcdf." [Online]. Available: https://www.unidata.ucar.edu/software/netcdf/docs/

References ii

- [5] NOAA, "What is netcdf?" [Online]. Available: https://www.esrl.noaa.gov/psd/data/gridded/whatsnetCDF.html
- [6] CF Community, "CF conventions and metadata." [Online]. Available: http://cfconventions.org/
- [7] B.O.D.C., "Climate and forecast (CF) netcdf format." [Online]. Available: https: //www.bodc.ac.uk/resources/delivery_formats/cfnetcdf_format/
- [8] N.A.S.A., "Climate and forecast (CF) metadata conventions." [Online]. Available: https://earthdata.nasa.gov/esdis/eso/standards-and-references/ climate-and-forecast-cf-metadata-conventions
- [9] U. Schulzweida, "C.D.O. user guide," Oct. 2019. [Online]. Available: https://doi.org/10.5281/zenodo.3539275

References iii

- [10] "ecCodes," 2017. [Online]. Available: https://www.ecmwf.int/node/18132
- [11] J. Ahrens, B. Geveci, and C. Law, "Paraview: An end-user tool for large-data visualization," in The Visualization Handbook, 2005.
- [12] E. Bilgiç and O. Gunduz, "Dose and risk estimation of Cs-137 and I-131 released from a hypothetical accident in Akkuyu Nuclear Power Plant," <u>Journal of Environmental Radioactivity</u>, vol. 211, p. 106082, 01 2020.
- [13] M. Cassiani, A. Stohl, D. Olivié, Ø. Seland, I. Bethke, I. Pisso, and T. Iversen, "The offline lagrangian particle model flexpart—noresm/cam (v1): model description and comparisons with the online noresm transport scheme and with the reference flexpart model," Geoscientific Model Development, vol. 9, no. 11, pp.

References iv

- 4029–4048, 2016. [Online]. Available: https://gmd.copernicus.org/articles/9/4029/2016/
- [14] A. Stohl, G. Wotawa, P. Seibert, and H. Kromp-Kolb, "Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories," <u>J.</u> <u>Appl. Meteorol.</u>, vol. 34, pp. 2149–2165, 1995.
- [15] A. Stohl and P. Seibert, "Accuracy of trajectories as determined from the conservation of meteorological tracers," Q. J. Roy. Meteor. <u>Soc.</u>, vol. 125, pp. 1465–1584, 1998.

Backup slides

cdo – some more insight with examples

```
cdo -ntime <infile>
                              - Display number of timesteps of a file

    Select variable tas from file

cdo -selname,tas <in> <out>
cdo -seltimestep, 1/12 < in > < out > - Select a time range (1 \rightarrow 12)
cdo -invertlat <in> <out> - Invert latitudes from N-S to S-N
Interpolate model levels to pressure levels:
cdo -ml2pl,92500,85000,50000,20000 <in> <out>
Create a file with masked ocean:
cdo -setrtomiss,-20000,0 -topo topo-Land.grb ←
Interpolate 6-hourly data to 1-hourly data:
cdo -inttime,6 <infile> <outfile>
→ operators can be combined and concatenated!
cdo -timmean -yearsum -setrtoc,0,15,0 -selname,depth ...
```

-selmon,1,2,3 -selyear,1960/1969 <infile> <outfile>

wgrib2 - slice and dice grib2 format (encode and decode!)

Question: I have a grib2 file that contains information at global scale. Using wgrib2, I want to extract a subset from it based on user-provided latitude(s) and longitude(s). How can I do that?

```
wgrib2 INput.grb 30:35:.2 31:34:.2 OUTput.grb2 grib
```

Confront with:

cdo -sellonlatbox,lon;,lone,lat;,late INput.grb OUTput.grb

ecCodes - effective use to compare two suspicious .grb files

Question: From Research Data Archive, download *exact* same input climate data, via (a) GUI and (b) control file. Model would accept only one of them. – **Why**?

"OUTPUT grid outside mother domain" - FLEXPART

```
[945255] != [1297979]
long [totalLength]:
long [latitudeOfFirstGridPoint]:
                                          [90000000] != [-90000000]
                                          [0] != [180000000]
long [longitudeOfFirstGridPoint]:
long [latitudeOfLastGridPoint]:
                                          [-900000000] = [900000000]
long [longitudeOfLastGridPoint]:
                                          [359750000] != [179750000]
                                          ([00000000] != [01000000])
long [scanningMode]: [0] != [64]
long [parameterCategory]:
                                          [2] != [0]
long [parameterNumber]:
                                          [2] != [0]
string [typeOfFirstFixedSurface]:
                                      [sfc] != [pl]
long [scaledValueOfFirstFixedSurface]: [10] != [200]
long [dataRepresentationTemplateNumber]: [3] != [0]
[missingValueManagementUsed] not found in 2nd field
```

Beside coordinate grid, more metada being inspected (here, only a few shown...) $_{41}$

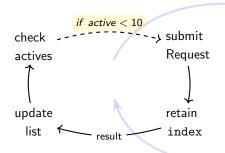
Parameter identification – grib v.1 vs grib v.2 definition tables

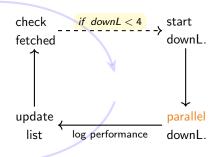
GRIB2 - GRIB1 Local Parameter Conversion Table

Revised 02/27/2009 and text depicts changes made since 03/25/2008

The following table contains a list of GRIB1 locally defined NCEP parameters and their GRIB2 equivalent.

GRIB2			Parameter Name	GRUHI	
Product Discipline	Category	Parameter Number		Parameter Table #	Pammeter Number
Sect 0 Octet 7	Bent 4 Octet 10	Sect 4 Octet 11	5	Sect I Onet 4	Bect I Octet 9
0	0	0	Temperature	3 (SST)	11
0	0	15	Virtual potential temperature	2	189
0	0	192	Snow Phase Change Heat Flux	2	229
0	0	193	Temperature tendency by all radiation	2	216
0	1	22	Cloud Water Mixing Ratio	2	153
0	1	23	Ice mixing ratio	2	178
0	1	24	Rain Water Mixing Ratio	2	170
0	1	25	Snow Water Mixing Ratio	2	171
0	1	32	Graupel mixing ratio	2	179
0	1	192	Categorical Rain	2	140
0	1	193	Categorical Freezing Rain	2	141
0	1	194	Categorical Ice Pellets	2	142
0	1	195	Categorical Snow	2	143
0	1	196	Convective Precipitation Rate	2	214
0	1	197	Horizontal Moisture Divergence	2	135
0	1	199	Potential Evaporation	2	228
0	1	200	Potential Evaporation Rate	2	145
0	1	201	Snow Cover	2	238
0	1	202	Rain Fraction of Total Liquid Water	129	131
0	1	203	Rime Factor	129	133
0	1	204	Total Column Integrated Rain	129	138
0	1	205	Total Column Integrated Snow	129	139
0	1	206	Total Icing Potential Diagnostic	2	186
0	1	207	Number concentration for ice particles	2	198


GRIB1: Element coding by element and table


- Eg: temperature is element=11 in table=3 (WMO)

The Python API client – 2 steps workflow

1- Submitting requests to RDA

2- Bringing completed request home

Submission constrain: max number of active requests per user being processed (RDA side) equals 10.

Download constrain: max number of active datasets being downloaded in parallel, **should** not exceed **equal 3**.

from rda_client import submit, checkStatus, download, authenticate