Simulations for Gold Nanoparticles: Electronic Structure, Multi-scale and Data-driven Approaches

Ioannis N. Remediakis

Quantum Theory of Materials Group Department of Materials Science and Technology, Univ. of Crete Institute for Electronic Structure and Lasers, FORTH, Greece

Heraklion Harbor

University of Crete / Foundation for Research and Technology (FORTH).

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ UNIVERSITY OF CRETH

Simulations for Gold Nanoparticles: Outline

- Atomistic quantum-mechanical simulations.
- Self-assembled monolayers on gold.
- Shape of gold nanoparticles
 - Theory
 - Catalysis
 - Polymer-gold nanocomposite.

Simulations for Gold Nanoparticles: Outline

- Atomistic quantum-mechanical simulations.
- Self-assembled monolayers on gold.
- Shape of gold nanoparticles
 - Theory
 - Catalysis
 - Polymer-gold nanocomposite.

Quantum-mechanical atomistic simulations: an example

Calculators

- Set of functions like $E(R_1, R_2)$, $F_{1x}(R_1, R_2)$.
- Empirical functions (fast, problem-specific,~ 1ns)

• Quantum-mechanical: system of coupled nonlinear PDEs (slow, transferable, ~1h).

Tasks of atomistic simulations

- 1. Optimization (*e.g structural chemistry*).
- 2. Response (e.g Young's modulus).
- 3. Dynamics (*e.g viscosity*).
- 4. Rates of rare events (*e.g turnover of a reaction*).

• 2 and 4 demand for quantum-mechanical calculators.

From Hamilton to Schrödinger

Hamilton (1827): every physical system is described by two functions, H, S, that depend on positions, x, and momenta, p:

$$\mathcal{H} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + V(x_1, x_2, \dots, x_N).$$
(1)

- For stationary states/equilibrium, H = E, where E = constant (energy).
- Schrödinger (1926): \mathcal{H} is an **operator** that is constructed by replacing $p \rightarrow -i\hbar \frac{\partial}{\partial x}$ into the Hamiltonian function.
- the energies of stationary states satisfy the equation

$$\mathcal{H}\psi = E\psi. \tag{2}$$

http://en.wikipedia.org/wiki/William_ Rowan_Hamilton http://en.wikipedia. org/wiki/Erwin_Schr%C3%B6dinger

What is ψ ; Statistical interpretation

- $\psi = Wavefunction.$
- Copenhagen interpretation: |ψ(x, y, z)|²ΔV is the probability to find an electron in a region of volume ΔV centered at point (x, y, z) of space.

http://en.wikipedia.org/wiki/Wave_function

From one particle to many electrons

Exchange:

 $\psi(x_1, x_2) = -\psi(x_2, x_1) \Rightarrow$ Pauli principle

Correlation:

 $V = \frac{e^2}{4\pi\varepsilon_0 r} \Rightarrow$ Coupled probabilities plus infinite repulsion.

Entaglement:

Measuring one electron affects the wavefunctions of others.
But...

 $1\, s_{2}^{2} 2\, s_{1}^{2} 2\, p_{10}^{\prime} 3\, s_{12}^{\prime} 3\, p_{18}^{\prime} 4\, s_{20}^{\prime} 3\, d_{0}^{\circ} 4\, p_{30}^{\prime} 5\, s_{31}^{\prime} 4\, d_{0}^{\circ} 5\, p_{34}^{\prime} 6\, s_{30}^{\prime} 4\, f_{70}^{\prime \prime} 5\, d_{0}^{\circ} 6\, p_{30}^{\prime} 7\, s_{30}^{\prime} 5\, f_{102}^{\prime \prime} 6\, d_{112}^{\circ} 7\, p_{118}^{\prime}$

Density-functional theory (DFT)

- For each electron, all other electrons can be replaced by an effective potential V(r) in Schödinger equation.
- DFT: V(r) exists and is unique functional of the number density, n(r).
- \blacktriangleright $V(\mathbf{r}) = V_H + V_{xc}$, where
 - V_H (Hartree) is the electrostatic potential energy generated by charge density -en(r).
 - V_{xc} (exchange and correlation) potential includes:
 - Self-interaction correction.
 - Virtual repulsion due to Pauli principle (exchange).
 - ▶ Infinite Coulomb repulsion due to $V_C \sim 1/r$ (correlation).

https://en.wikipedia.org/wiki/Walter_Kohn

Electronic structure with DFT: A flowchart

- 1. Density $n(\mathbf{r}) \longrightarrow$
- 2. Effective potential $V(\mathbf{r}) \longrightarrow$
- 3. Wavefunctions, energies $\{\psi, \epsilon\}$ through Kohn-Sham equation \longrightarrow

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r})$$

4. Density $n(\mathbf{r})$ $n(\mathbf{r}) = \sum_{i} f(\epsilon_i) |\psi_i(\mathbf{r})|^2$

• Occupations, usually Fermi-Dirac: $f(\epsilon) = \frac{1}{1 + e^{-(\epsilon - \mu)/k_BT}}$

Density-Functional Theory (DFT) Milestones

- 1964: Publication of Hohenberg-Kohn theorem.
- 1970: Energy levels in crystals (band structure).
- 1980: Bond lengths, mechanical properties.
- 1990: Surfaces, electric properties.
- 2000: Chemical reactions, optical properties.
- 2010: Nanostructures, dynamical properties.
- 2020: Photonics, light-matter interaction.

Multi-scale simulations

- DFT can treat few hundreds of atoms at most.
- Other length- and time-scales are accessed through empirical/semiempirical model.
 - At the handshake scale, we make sure DFT and model give identical results.
- Examples:
 - Fit of V(x,y,z), use it for atomistic simulation.
 - Wulff construction \rightarrow nanoparticle shape.
 - Use DFT geometry for classical dynamics.

Outline

- Atomistic quantum-mechanical simulations.
- Self-assembled monolayers on gold.
- Shape of gold nanoparticles
 - Theory
 - Catalysis
 - Polymer-gold nanocomposite.

DFT coupled to Molecular Dynamics: Self-assembled monolayers

- PhD work (and slides) of Dimitris Stefanakis
- In collaboration with G. Kopidakis and V. Harmandaris.

Self Assembled Monolayers (SAMs) in brief

J. Christopher Love et al. Chem. Rev., 2005, 105 (4), pp 1103-1170

Functional Group Examples:

- -CH₃, -CF₃ (hydrophobic, metalophobic and highly anti-adherent)
- -COOH, -NH₂, -OH (hydrophilic, good metal ion and protein binding properties)
- -SH (efficiently bind metallic ions and nanoparticles to the SAMs)

SAMs on Stepped Au surfaces

	Surfaces			
	Au(111)	Au(211)	Au(221)	Au(311)
Surface dimensions of a single cell (nm ²)	0.597×0.517	0.597×0.731	0.597×0.895	0.597×0.990
Surface area of a single cell (nm ²)	0.309	0.436	0.534	0.591
Grafting density (nm^{-2})	3.24	2.29	1.87	1.69
Total surface dimensions (nm)	17.9×15.5	17.9×21.9	17.9×26.9	17.9×29.7
Total slab surface (nm ²)	280.80	394.20	486.00	534.60
Number of Au atoms	25200	19800	30600	43200
Microfacet notation		$3(111) \times (100)$	$4(111) \times (111)$	$2(111) \times (100)$

Calculation of the potential for the dihedral Au-S-C-C

Atomistic simulations: Final formations of SAMs on Au su

Ordered systems

Semi-ordered system

Disordered system

From Order to Disorder of Alkanethiol Self-Assembled Monolayers on Complex Au (211), (221), and (311) Surfaces: Impact of the Substrate Dimitrios Stefanakis, Vangelis Harmandaris, Georgios Kopidakis, and Ioannis Remediakis The Journal of Physical Chemistry C 2021 125 (6), 3495-3508

Outline

- Atomistic quantum-mechanical simulations.
- Self-assembled monolayers.
- Shape of gold nanoparticles
 - Theory
 - Catalysis
 - Polymer-gold nanocomposite.

Shape of nanoparticles

- Shape affects functionality:
 - Determines number of active sites for catalysis.
 - Determines plasmon energies for optoelectronics.
- Shape is determined by the relative surface energies of different facets.
 - Shape can be tuned by functional groups.

Eric C. Dreaden et al, Ch. Soc. Rev., 2012

Shapes of catalytic nanoparticles

Heinz et al., Surf. Sci. Rep. 72, 1 (2017)

What determines shape?

ON THE EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES. By J. Willard Gibbs.

"Die Energie der Welt ist constant. Die Entropie der Welt strebt einem Maximum zu." al... CLAUSIUS.* the surfaces. Equation (664) may then be written $-\delta W_{\rm V} + \Sigma(\sigma \, \delta s) = 0.$ (667)

Gibbs (1875):

$$G = G_{bulk} + \Sigma \gamma_{hkl} A_{hkl}$$

Surface tension γ = (Surface energy) / (area)

(Surface energy) = (Energy)- (Energy of bulk)

Equilibrium shapes

Minerals (billions of years to equilibrate) or nanoparticles (small size).

www.mindat.org

Turner et al., Adv. Func. Mater. 2009

Wulff construction: $d_{hkl} / \gamma_{hkl} = c$

Barmparis, Lodziana, Lopez, Remediakis, Beilstein J. Nanotechn. 6, 361 (2015)

From continuum to atomistic

• Wulff construction is correct for large nanoparticles.

- For small ones, different shapes appear for different values of *c* in $d_{hkl} / \gamma_{hkl} = c$.
- <u>Atomistic Wulff</u> (Barmparis and Remediakis, PRB 2012).

N. López, Nanoscale 9, 13089 (2017).

28/45

DFT coupled to Data Science: Machinelearning prediction of energies

- PhD work (and slides) of Emmanuel Pervolarakis/
- In collaboration with A. Mpoumpaki, G. Tritsaris and P. Rosakis.

Machine learning for Au energies

- Data: Energy of nanoparticles, nanowires, slabs.
 - DFT/PBE calculations with VASP.
 - All known interatomic potentials (OPENKIM/LAMMPS).
- Linear regression model
 - python pandas and scikit-learn
 - Features: N, N_b , N_s , N_e , N_v .
 - Property: total energy.
 - Excellent fit (score = 0.99999991)
 - Accurate predictions (avg. Error = 0.4%).
- No need for expensive calculations for large nanoparticles!

Outline

- Atomistic quantum-mechanical simulations.
- Self-assembled monolayers.
- Shape of gold nanoparticles
 - Theory
 - Catalysis
 - Polymer-gold nanocomposite.

Nano is different

...but nano-gold is a superb catalyst.

Left: Jewel from Malia, Crete (ca. 1800 BC) Right: CO oxidation at room T on rutile-supported Au, Valden, Lei, Goodman, Science (1998)

Two paths for CO oxidation

Gold-only (top) and Gold-oxide interface path (bottom).

I. N. Remediakis, N. Lopez and J. K. Nørskov, Angew. Chemie Int. Ed. **44**, 1824 (2005)

35/45

Chemical reactions take place only on specific types of sites

Outline

- Atomistic quantum-mechanical simulations.
- Self-assembled monolayers.
- Shape of gold nanoparticles
 - Theory
 - Catalysis
 - Polymer-gold nanocomposite.

DFT coupled to MD: Polymer-gold nanocomposites

- PhD work of Albert John Power
- In collaboration with V. Harmandaris.

From Au to PS composite

- Wulff shape of thiol-covered Au of different sizes.
- Covered by polyethelene of different lengths and concentrations.

Interface and Interphase

Article

Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles

Albert J. Power ^{1,2,*}, Ioannis N. Remediakis ^{3,4} and Vagelis Harmandaris ^{1,2,5,*}

Acknowledgments

George Kopidakis kopidaki@materials.uoc.gr

Group Leader

Ioannis Remediakis remed@materials.uoc.gr

Group Leade

Daphne Davelou d.davelou@materials.uoc.gr

Postdoctoral Fellow

Dimitris Stefanakis dimstef@materials.uoc.gr

PhD Student

Andreas Douloumis adouloumis@materials.uoc.gr

MSc Student

Foteini Dragosli mst1513@edu.materials.uoc.gr

BSc Student

Quantum Theory of Materials group

qtm.materials.uoc.gr

Georgios Vailakis gvailakis@materials.uoc.gr

PhD Student

Nikos Kazatzakis ph4821@edu.physics.uoc.gr

BSc Student

Manos Pervolarakis emper@materials.uoc.gr

PhD Student

Rafaela M. Giappa rafaelagiappa@materials.uoc.gr

PhD Student

Christina Kotsi ph4846@edu.physics.uoc.gr

BSc Student

Acknowledgments - Collaborators

Dr. George Barmparis (FORTH)

Prof. Vangelis Harmandaris (CyI, UoC)

Albert John Power (UoC)

Prof. Nuria Lopez (ICIQ, Catalonia)

Dr. George Tritsaris (Harvard)

Prof. Phoebus Rosakis (UoC, IACM)

Acknowledgments - Software

- Commercial package: VASP
- Open-source projects
 - ASE (tools),
 - GPAW, DACAPO (DFT)
 - GROMACS, LAMMPS, OPENKIM (MD)

ASE

- scikit-learn, pandas (machine learning, data)

GROMACS

Acknowledgments - Funding and CPU

- Funding:
 - HFRI project MULTIGOLD 1303 / KA10480.
 - ESIF / EΔBM project MIS 5048521 / KA 10582.
 - Research Committee, University of Crete, KA 4979, 10136.
- CPU time:
 - National HPC facility, ARIS pr007027-NANOGOLD pa181005-NANOCOMPDESIGN
 - CvTera/BIBLIOTHECA ALEXANDRINA pro17a111s1

