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Motivation

Problems for which quantum computers might be advantageous

Factoring

70747 = 263× 269

Optimization

Searching databases

Quantum simulation
I Quantum chemistry

I Particle physics

I Cosmology
I Material science
I ...

Machine learning
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Motivation

On the verge of the NISQ era

Noisy Intermediate-Scale Quantum
(NISQ) technology (50-100 qubits) is
already available

First small/scale devices are
commercially available

Noise signi�cantly limits the circuit
depths that can be executed reliably
I Not fault tolerant
I No quantum error correction

Current NISQ devices have already
outperformed classical devices

J. Preskill, Quantum 2, 79 (2018)

F. Arute et al., Nature 574, 5050 (2019)
H.-S. Zhong et al., Science 370, 1460 (2020)
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Outline

1 Motivation

2 The Circuit Model of Quantum Computing

3 Dimensional Expressivity Analysis

4 Measurement Error Mitigation

5 Summary & Outlook
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The Circuit Model of Quantum Computing

Quantum bit

Qubit: two-dimensional quantum system

Hilbert space H with basis {|0〉 , |1〉}, called the computational basis

Contrary to classical bits, it can be in a superposition

|ψ〉 = α |0〉+ β |1〉 , α, β ∈ C, |α|2 + |β|2 = 1

Measuring the qubit in the computational basis collapses the state onto one of the
basis states

Probabilities of measuring the two outcomes 0 and 1

p(0) = |α|2, |ψ〉 = |0〉
p(1) = |β|2, |ψ〉 = |1〉

Unlike for classical systems measurement changes the quantum system
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The Circuit Model of Quantum Computing

Multiple quantum bits

N qubits: Hilbert space is the tensor product H⊗ · · · ⊗ H︸ ︷︷ ︸
N times

Most general state in the computational basis

|ψ〉 =
1∑

i1,...,iN=0

ci1...iN |i1〉 ⊗ · · · ⊗ |iN〉

Multiple qubits can be entangled
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The Circuit Model of Quantum Computing

Entanglement of bipartite systems

Consider bipartite systems HA ⊗HB

A quantum state that can be factored as a tensor product of states of its local
constituents is called separable state or product state

|ψ〉 = |ψA〉 ⊗ |ψB〉

Otherwise the state is entangled

Example

|ψ1〉 = 1
2

(|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉)
= 1√

2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

⇒ product state

|Φ+〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)
⇒ entangled state (Bell state)
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The Circuit Model of Quantum Computing

Entanglement of bipartite systems

Let us consider the Bell state |Φ+〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

Bob can measure his qubit

pBob(0) =
1

2
,

|ψ〉 = |0〉 ⊗ |0〉 , pAlice(0) = 1

pBob(1) =
1

2
,

|ψ〉 = |1〉 ⊗ |1〉 , pAlice(1) = 1

⇒ Bob does not obtain information about the state
If Alice measures after Bob she obtains the same result with certainty
⇒ The measurement outcomes are perfectly correlated
Choice of measurement at one location a�ects the other qubit
⇒ �Spooky action at a distance�
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The Circuit Model of Quantum Computing

Quantum gates

Quantum mechanics is reversible, |ψ〉 undergoes unitary evolution under some
(time-dependent) Hamiltonian H(t)

|ψ(t)〉 = T exp

(
−i
∫ t

0

dsH(s)

)
︸ ︷︷ ︸

unitary matrix U

|ψ0〉

Quantum gates are represented by unitary matrices

Typically gates only act on a few qubits in a nontrivial way

U
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The Circuit Model of Quantum Computing

Common single-qubit quantum gates

Hadamard H H =

(
1√
2

1√
2

1√
2
− 1√

2

) |0〉 → 1√
2

(|0〉+ |1〉)

|1〉 → 1√
2

(|0〉 − |1〉)

X X X =

(
0 1
1 0

) |0〉 → |1〉
|1〉 → |0〉

Y Y Y =

(
0 −i
i 0

) |0〉 → −i |1〉
|1〉 → i |0〉

Z Z Z =

(
1 0
0 −1

) |0〉 → |0〉
|1〉 → − |1〉
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The Circuit Model of Quantum Computing

Common single-qubit rotations

RX (θ) RX (θ) RX (θ) = exp
(
−i θ

2
X
)

RY (θ) RY (θ) RY (θ) = exp
(
−i θ

2
Y
)

RZ (θ) RZ (θ) RZ (θ) = exp
(
−i θ

2
Z
)
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The Circuit Model of Quantum Computing

Common multi-qubit quantum gates

CNOT
•

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉
|0〉 ⊗ |1〉 → |0〉 ⊗ |1〉
|1〉 ⊗ |0〉 → |1〉 ⊗ |1〉
|1〉 ⊗ |1〉 → |1〉 ⊗ |0〉

SWAP gate ×
× SWAP =


1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 1


|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉
|0〉 ⊗ |1〉 → |1〉 ⊗ |0〉
|1〉 ⊗ |0〉 → |0〉 ⊗ |1〉
|1〉 ⊗ |1〉 → |1〉 ⊗ |1〉

To�oli gate
•
• To�oli =

16×6 0 0
0 0 1
0 1 0

 CCNOT
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The Circuit Model of Quantum Computing

Quantum gates

The reversible classical gates can be implemented on a quantum computer
⇒ We can replicate classical computation

The Hadamard gate can create superpositions out of a single basis state

|0〉 H |+〉 |0〉 → |+〉 =
1√
2

(|0〉+ |1〉)

The CNOT gate can create entanglement

|ψ1〉 •
|ψ2〉

|ψ1〉 ⊗ |ψ2〉 → |φ12〉 6= |φ1〉 ⊗ |φ2〉

Since quantum mechanics is linear, we can apply gates to superpositions of

basis states

CNOT
(
α |0〉 ⊗ |0〉+ β |0〉 ⊗ |1〉+ γ |1〉 ⊗ |0〉+ δ |1〉 ⊗ |1〉

)
=α |0〉 ⊗ |0〉+ β |0〉 ⊗ |1〉+ γ |1〉 ⊗ |1〉+ δ |1〉 ⊗ |0〉
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The Circuit Model of Quantum Computing

Quantum circuits

Combining multiple gates we can build quantum circuits

|0〉 Rx(θ0) • X •

|0〉 Rz(θ1) •

|0〉

Depth of a circuit: maximum length of a directed path from the input to the
output

Extracting information: �nal measurement of the qubits (usually in the
computational basis)
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The Circuit Model of Quantum Computing

Why is Quantum Computing more powerful?

The Hilbert space of N qubits is the tensor product H⊗ · · · ⊗ H︸ ︷︷ ︸
N times

⇒ Dimension 2N , number of basis states grows exponentially

We can build superpositions of basis states and apply unitary gates to them

|0〉+ |1〉 U U |0〉+ U |1〉

⇒ �Quantum parallelism�

Multiple qubits can be entangled

⇒ Correlations that have no classical analog



dummy

The Circuit Model of Quantum Computing

Why is Quantum Computing more powerful?

The Hilbert space of N qubits is the tensor product H⊗ · · · ⊗ H︸ ︷︷ ︸
N times

⇒ Dimension 2N , number of basis states grows exponentially

We can build superpositions of basis states and apply unitary gates to them

|0〉+ |1〉 U U |0〉+ U |1〉

⇒ �Quantum parallelism�

Multiple qubits can be entangled

⇒ Correlations that have no classical analog



dummy

The Circuit Model of Quantum Computing

Why is Quantum Computing more powerful?

The Hilbert space of N qubits is the tensor product H⊗ · · · ⊗ H︸ ︷︷ ︸
N times

⇒ Dimension 2N , number of basis states grows exponentially

We can build superpositions of basis states and apply unitary gates to them

|0〉+ |1〉 U U |0〉+ U |1〉

⇒ �Quantum parallelism�

Multiple qubits can be entangled

⇒ Correlations that have no classical analog



dummy

The Circuit Model of Quantum Computing

Example

Simple circuit preparing an entangled state (Bell state)

|0〉 H •

|0〉

1 |0〉 ⊗ |0〉 H−→ 1√
2

(|0〉+ |1〉)⊗ |0〉
= 1√

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉)

2 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |0〉) CNOT−−−−→ 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)
3 Measurement: p(|0〉 ⊗ |0〉) = 1

2
, p(|1〉 ⊗ |1〉) = 1

2

Results on actual quantum hardware (ibmq_vigo)
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The Circuit Model of Quantum Computing

Where do we stand?

Current NISQ devices

Small or intermediate scale

Considerable amount of noise

Only shallow circuits can be executed
faithfully

Quantum advantage demonstrated

Quantum algorithms �useful� problems

Large number of qubits

Deep circuits

Quantum error correction necessary

So far only proof of principle
demonstrations

How can we utilize existing quantum hardware in a bene�cial way?
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The Circuit Model of Quantum Computing

Hybrid quantum-classical algorithms

Combine classical and quantum devices

Rely on classical computing where possible

Use the quantum device as a coprocessor
I Tackle the classically hard/intractable part of the problem
I Feed the classical data obtained from a measurement back to the classical computer

classical data

classical data

classical computer quantum device

Even modest quantum hardware can yield advantages
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The Circuit Model of Quantum Computing

Variational Quantum Eigensolver

Algorithm to �nd ground states of quantum Hamiltonians H
De�ne a cost function C(~θ) = 〈ψ(~θ)|H|ψ(~θ)〉, ~θ = Rn

Realize a parametric ansatz |ψ(~θ)〉 by a parametric quantum circuit

Provided |ψ(~θ)〉 is expressive enough the minimum of C(~θ) is obtained for the
ground state of H
Finding the minimum: feedback loop between the classical computer and the
quantum device

classical computer quantum device

Peruzzo et al., Nat. Commun. 5, 1 (2014)
J. R. McClean et al., New J. Phys. 18, 023023 (2016)
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The Circuit Model of Quantum Computing

Variational Quantum Algorithms

classical computer quantum device

Advantages

Flexible ansatz design

Hamiltonian exists only as a
measurement

Partially resilient to systematic
errors

Challenges

How to choose an expressive
ansatz?

How to avoid redundant
parameters?

How to deal with e�ects of noise?
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2 The Circuit Model of Quantum Computing

3 Dimensional Expressivity Analysis

4 Measurement Error Mitigation
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Dimensional Expressivity Analysis

Number of parameters in the ansatz circuit should be

large for solutions to be reachable

large in order not to introduce arti�cial local optima

small to reduce noise

small for e�cient use of many classical optimizers

Optimal circuit for VQE

maximally expressive: be able to generate all (physically relevant) states

minimal: no unnecessary parametric gates

Can we develop a mathematical framework to determine if a circuit is both minimal and
maximally expressive?
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Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

Parametric quantum circuit with parameters ~θ ∈ P ⊆ Rn generating |C (~θ)〉

|0〉 RY (θ1) RZ (θ3) • RY (θ5) RZ (θ7)

|0〉 RY (θ2) RZ (θ4) RY (θ6) RZ (θ8)

Treat the parametric circuit as a map that maps the input parameters to the state
space of the quantum device

C : ~θ 7→ |C (~θ)〉 = RZ (θ8) . . .RY (θ1) |0〉 ⊗ |0〉

Parameter space P : real manifold

Image of C : circuit manifoldM
Which parameters are necessary to generate the circuit manifoldM?

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)
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Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

The tangent space ofM is spanned by the
tangent vectors |∂jC (~θ)〉

θk is redundant i� |∂kC (~θ)〉 is a linear
combination of |∂jC (~θ)〉, j 6= k

Iterative procedure to identify redundant parameters

θ1 is never redundant as long as the corresponding parametric gate is nontrivial

Check whether |∂k+1C (~θ)〉 is a linear combination of |∂1C (~θ)〉, . . . , |∂kC (~θ)〉
Remove redundant parameters

I Parameter removal implies setting the parameter to a constant value
I Rotation gates (e.g. exp(− i

2
ϑX )): choose the parameter ϑ = 0 to achieve an 1

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)
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Dimensional Expressivity Analysis

Checking for parameter independence

θ1 is never redundant as long as corresponding parametric gate is nontrivial

For θk , k = 2, ..., n repeat the following steps
I Since P is a real manifold, we have to consider the real Jacobian

Jk =



| |
<|∂1C 〉 . . . <|∂kC 〉
| |

| |
=|∂1C 〉 . . . =|∂kC 〉
| |


I If the matrix Jk has full rank then θk is independent

Instead of checking the rank of Jk one can also compute the rank of Sk = JTk Jk

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)
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Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

Memory requirements on a classical computer: exponential in the number

of qubits N because Jk has dimensions 2N+1 × k

Can we use a hybrid-quantum classical approach for the Dimensonal Expressivity
Analysis?

classical computer quantum device

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)
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Dimensional Expressivity Analysis

Hybrid Quantum-Classical Dimensional Expressivity Analysis

Since the �rst parameter is always nontrivial S1 = 1
4

For k ≥ 2 the k × k matrices Sk = JTk Jk can be cast into the form

Sk =

(
Sk−1 Ak

AT
k

1
4

)
with Ak =


<
〈
∂1C (~θ)

∣∣∣∂kC (~θ)
〉

...

<
〈
∂k−1C (~θ)

∣∣∣∂kC (~θ)
〉


For RG (ϑ) = exp(− i
2
ϑG ) where G is a gate, the derivative is essentially a circuit

|RG 〉 = |0〉 RG (ϑ) ⇒ 2i |∂θRG 〉 = |0〉 RG (ϑ) G

Up to an imaginary factor |∂jC (~θ)〉 can be prepared on a quantum device

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)
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Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

If we can e�ciently obtain <〈∂jC (~θ)|∂kC (~θ)〉 on the quantum device, we can
carry out dimensional expressivity analysis e�ciently

Single-qubit example: |C (~θ)〉 = RZ (θ2)RX (θ1) |0〉

|0〉 RX (θ1) RZ (θ2)

Circuit for obtaining <〈∂1C (~θ)|∂2C (~θ)〉

|0〉 RX (θ1) RZ (θ2) •

|0〉 H • X • X H

Real part of the overlap is proportional to the probability for the ancilla being in |0〉

S. Lloyd, M. Mohseni, P. Rebentrost, arXiv:1307.0411 (2013)
L. Zhao, Z. Zhao, P. Rebentrost, J. Fitzsimons, arXiv:1902.10394 (2019)

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)
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Dimensional Expressivity Analysis

Results for a single qubit on quantum hardware

Circuit we examine

C (θ4, θ3, θ2, θ1) =

RY (θ4)RZ (θ3)RX (θ2)RZ (θ1) |0〉

Number of independent
parameters: 3

RY (θ4) is redundant

Results on IBM quantum
hardware

Spectrum of Sk , k ≥ 2

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)
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Dimensional Expressivity Analysis

Results for two qubits on quantum hardware

Circuit we examine

|0〉 RY (θ1) RZ (θ3) • RY (θ5) RZ (θ7)

|0〉 RY (θ2) RZ (θ4) RY (θ6) RZ (θ8)

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)



dummy

Dimensional Expressivity Analysis

Summary

Allows for optimizing a given circuit by identifying and removing redundant

parameters

Makes it possible to remove unwanted symmetries as well

Can be e�ciently performed using a hybrid quantum-classical approach
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1 Motivation

2 The Circuit Model of Quantum Computing

3 Dimensional Expressivity Analysis

4 Measurement Error Mitigation

5 Summary & Outlook
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Measurement Error Mitigation

Noise on current quantum devices

|0〉 H •

|0〉

Errors arise from:

I Imperfect gates and crosstalk
I Coupling to environment
I Measurement/readout

Typical error rates

I Single-qubit gates: 0.1% - 0.3%
I Two-qubit gates: 0.3% - 5%
I Measurement/readout: 1% - 30%

Error mitigation: Try to correct for (some of) these errors

Suguru Endo, Zhenyu Cai, Simon C. Benjamin, Xiao Yuan, J. Phys. Soc. Jpn. 90, 032001 (2021)
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Measurement Error Mitigation

Measurement Error Mitigation

Focus on a simple low-overhead, resource-e�cient mitigation scheme suitable
even for small devices

Assumptions:
I Only measurement errors, no other sources of noise
I Uncorrelated bit �ips, readout errors are not correlated between qubits
I Bit �ips occur with constant �ip probability for each qubit

Idea: construct random operators Õ such that such the expectation value subject
to noise corresponds to the true expectation value

E〈ψ|Õ|ψ〉 = 〈ψ|O|ψ〉

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Xiaoyang Wang, arXiv:2007.03663 (2020)
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Measurement Error Mitigation

Single-qubit example

Consider a single qubit with �ip probabilities 0
p0−→ 1, 1

p1−→ 0 and measure the

Z =

(
1 0
0 −1

)
operator

Readout Bit Flips Probability Noisy operator

correct 0→ 0, 1→ 1 (1− p0)(1− p1) Z̃ = Z

incorrect 0→ 1, 1→ 0 p0p1 Z̃ = −Z
0 outcome incorrect 0→ 1, 1→ 1 p0(1− p1) Z̃ = −1
1 outcome incorrect 0→ 0, 1→ 0 (1− p0)p1 Z̃ = 1

Expected value of the noisy operator

EZ̃ = (1− p0)(1− p1)Z − p0p1Z − p0(1− p1)1 + (1− p0)p11

= (1− p0 − p1)Z + (p0 − p1)1

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Xiaoyang Wang, arXiv:2007.03663 (2020)



dummy

Measurement Error Mitigation

Single-qubit example

Consider a single qubit with �ip probabilities 0
p0−→ 1, 1

p1−→ 0 and measure the

Z =

(
1 0
0 −1

)
operator

Readout Bit Flips Probability Noisy operator

correct 0→ 0, 1→ 1 (1− p0)(1− p1) Z̃ = Z

incorrect 0→ 1, 1→ 0 p0p1 Z̃ = −Z

0 outcome incorrect 0→ 1, 1→ 1 p0(1− p1) Z̃ = −1
1 outcome incorrect 0→ 0, 1→ 0 (1− p0)p1 Z̃ = 1

Expected value of the noisy operator

EZ̃ = (1− p0)(1− p1)Z − p0p1Z − p0(1− p1)1 + (1− p0)p11

= (1− p0 − p1)Z + (p0 − p1)1

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Xiaoyang Wang, arXiv:2007.03663 (2020)
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Measurement Error Mitigation

Single-qubit Example

Expected value of the noisy operator

EZ̃ = (1− p0 − p1)Z + (p0 − p1)1

Reconstruction of the true expectation value

available from calibration on noisy quantum device

〈ψ|Z |ψ〉 =
1

1− p0 − p1
× E 〈ψ| Z̃ |ψ〉 −

p0 − p1
1− p0 − p1

true expectation value measurment on noisy quantum device

Calibration of the �ip probabilities

pq,0 : |0〉 pq,1 : |0〉 X

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Xiaoyang Wang, arXiv:2007.03663 (2020)
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Measurement Error Mitigation

Generalization to multiple qubits and arbitrary operators

General formula for Õk ∈ {1̃k , Z̃k}

E
(
ÕN ⊗ · · · ⊗ Õ1

)
=

∑
O∈{1,Z}⊗N

Γ(ON |ÕN)ON ⊗ · · · ⊗ Γ(O1|Õ1)O1

where

Γ(Oq|Õq) =


1− pq,0 − pq,1 for Õq = Z̃q ∧ Oq = Zq

pq,1 − pq,0 for Õq = Z̃q ∧ Oq = 1q

1 for Oq = 1q ∧ Õq = 1̃q

0 for Oq = Zq ∧ Õq = 1̃q

Set of equations isinvertible as long as pq,0 + pq,1 6= 1

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Xiaoyang Wang, arXiv:2007.03663 (2020)
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Measurement Error Mitigation

Two-qubit case, classical simulation

Results for a classical simulation

with readout errors only

Measure the expectation value of
Z ⊗ Z for 1050 random parameter sets

Monitor the average and standard
deviation of

| 〈ψ|Z ⊗ Z |ψ〉exact−〈ψ|Z ⊗ Z |ψ〉mitigated |

imbq_london

mean value
standard deviation

∝ s−0.49

∝ s−0.50

⇒ Mitigated results show power law decay s−1/2 just as in the noise-free case

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Xiaoyang Wang, arXiv:2007.03663 (2020)
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Measurement Error Mitigation

Two-qubit case, quantum hardware

Results for IBM quantum hardware

Measure the expectation value of
Z ⊗ Z for 1050 random parameter sets

Monitor the average and standard
deviation of

| 〈ψ|Z ⊗ Z |ψ〉exact−〈ψ|Z ⊗ Z |ψ〉mitigated |

imbq_london

mean value
standard deviation

∝ s−0.46

∝ s−0.30

⇒ Improvement of the error up to one order of magnitude

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Xiaoyang Wang, arXiv:2007.03663 (2020)
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Measurement Error Mitigation

Summary

For local Hamiltonians the overhead cost is polynomial

It is possible to do a probabilistic version of the mitigation scheme

The idea of constructing random operators is very general and can potentially be
applied to mitigate other kinds of errors
I Incorporate correlations between qubits
I Relaxation errors
I ...
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Summary & Outlook

Summary

Noisy intermediate-scale quantum devices are available

Hybrid-quantum classical algorithms are promising for these devices

Dimensional Expressivity Analysis allows for designing minimal maximally
expressive circuits for these applications

Measurement/readout errors can be e�ciently mitigated with low overhead

Outlook

Generalize Dimensional Expressivity Analysis to be able to quantify the
approximation error of a given ansatz

Extend the mitigation scheme to various other types of error

Quantum hardware is advancing quickly
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Thank you for your attention!

Questions?
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Appendix A: Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

<
〈
∂jC (~θ)

∣∣∣∂kC (~θ)
〉
can be obtained on the quantum device

In general < 〈ψ|φ〉 can be measured using an ancilla qubit provided one can
prepare the state

|χ〉 =
1√
2

(|0〉 ⊗ |ψ〉+ |1〉 ⊗ |φ〉)

Applying a Hadamard gate on the ancilla one �nds

(H ⊗ 1) |χ〉 =
1√
2

(|0〉 ⊗ (|ψ〉+ |φ〉) + |1〉 ⊗ (|ψ〉 − |φ)〉)

Probability of measuring the ancilla in zero

p(ancilla = 0) =
1

2

(
1 + < 〈ψ|φ〉

)

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)
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