Making the most out of noisy quantum computers: Strategies for circuit design and error mitigation

Stefan Kühn

EuroCC

MAY 2021

Motivation

Problems for which quantum computers might be advantageous

- Factoring

$$
70747=263 \times 269
$$

- Optimization

- Searching databases

- Quantum simulation
- Quantum chemistry

- Particle physics
- Cosmology
- Material science
- Machine learning

- Cryptography

Motivation

On the verge of the NISQ era

- Noisy Intermediate-Scale Quantum (NISQ) technology ($50-100$ qubits) is already available
- First small/scale devices are
 commercially available
- Noise significantly limits the circuit depths that can be executed reliably
- Not fault tolerant
- No quantum error correction

Motivation

On the verge of the NISQ era

- Noisy Intermediate-Scale Quantum (NISQ) technology (50-100 qubits) is already available
- First small/scale devices are commercially available
- Noise significantly limits the circuit depths that can be executed reliably
- Not fault tolerant
- No quantum error correction
- Current NISQ devices have already outperformed classical devices

J. Preskill, Quantum 2, 79 (2018) F. Arute et al., Nature 574, 5050 (2019)

Motivation

On the verge of the NISQ era

- Noisy Intermediate-Scale Quantum (NISQ) technology (50-100 qubits) is already available
- First small/scale devices are commercially available
- Noise significantly limits the circuit depths that can be executed reliably
- Not fault tolerant
- No quantum error correction
- Current NISQ devices have already outperformed classical devices

Outline

\author{

- Motivation
}

2. The Circuit Model of Quantum Computing

- Dimensional Expressivity Analysis
© Measurement Error Mitigation
(5) Summary \& Outlook

The Circuit Model of Quantum Computing

Quantum bit

- Qubit: two-dimensional quantum system
- Hilbert space \mathcal{H} with basis $\{|0\rangle,|1\rangle\}$, called the computational basis
- Contrary to classical bits, it can be in a superposition

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

The Circuit Model of Quantum Computing

Quantum bit

- Qubit: two-dimensional quantum system
- Hilbert space \mathcal{H} with basis $\{|0\rangle,|1\rangle\}$, called the computational basis
- Contrary to classical bits, it can be in a superposition

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

- Measuring the qubit in the computational basis collapses the state onto one of the basis states
- Probabilities of measuring the two outcomes 0 and 1

$$
\begin{array}{ll}
p(0)=|\alpha|^{2}, & |\psi\rangle=|0\rangle \\
p(1)=|\beta|^{2}, & |\psi\rangle=|1\rangle
\end{array}
$$

- Unlike for classical systems measurement changes the quantum system

The Circuit Model of Quantum Computing

Multiple quantum bits

- N qubits: Hilbert space is the tensor product $\underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{N \text { times }}$
- Most general state in the computational basis

$$
|\psi\rangle=\sum_{i_{1}, \ldots, i_{N}=0}^{1} c_{i_{1} \ldots i_{N}}\left|i_{1}\right\rangle \otimes \cdots \otimes\left|i_{N}\right\rangle
$$

- Multiple qubits can be entangled

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Consider bipartite systems $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- A quantum state that can be factored as a tensor product of states of its local constituents is called separable state or product state

$$
|\psi\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
$$

- Otherwise the state is entangled

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Consider bipartite systems $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- A quantum state that can be factored as a tensor product of states of its local constituents is called separable state or product state

$$
|\psi\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
$$

- Otherwise the state is entangled

Example

- $\left|\psi_{1}\right\rangle=\frac{1}{2}(|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Consider bipartite systems $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- A quantum state that can be factored as a tensor product of states of its local constituents is called separable state or product state

$$
|\psi\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
$$

- Otherwise the state is entangled

Example

- $\left|\psi_{1}\right\rangle=\frac{1}{2}(|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$
$=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
\Rightarrow product state

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Consider bipartite systems $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- A quantum state that can be factored as a tensor product of states of its local constituents is called separable state or product state

$$
|\psi\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
$$

- Otherwise the state is entangled

Example

- $\left|\psi_{1}\right\rangle=\frac{1}{2}(|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

$$
=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

\Rightarrow product state

- $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Consider bipartite systems $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- A quantum state that can be factored as a tensor product of states of its local constituents is called separable state or product state

$$
|\psi\rangle=\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle
$$

- Otherwise the state is entangled

Example

- $\left|\psi_{1}\right\rangle=\frac{1}{2}(|0\rangle \otimes|0\rangle+|0\rangle \otimes|1\rangle+|1\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

$$
=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

\Rightarrow product state

- $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$
\Rightarrow entangled state (Bell state)

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Let us consider the Bell state $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Let us consider the Bell state $\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Let us consider the Bell state $\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

- Bob can measure his qubit

$$
\begin{aligned}
& p_{\text {Bob }}(0)=\frac{1}{2}, \\
& p_{\text {Bob }}(1)=\frac{1}{2},
\end{aligned}
$$

\Rightarrow Bob does not obtain information about the state

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Let us consider the Bell state $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

- Bob can measure his qubit

$$
\begin{array}{ll}
p_{\text {Bob }}(0)=\frac{1}{2}, & |\psi\rangle=|0\rangle \otimes|0\rangle, \\
p_{\text {Bob }}(1)=\frac{1}{2}, & |\psi\rangle=|1\rangle \otimes|1\rangle,
\end{array}
$$

\Rightarrow Bob does not obtain information about the state

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Let us consider the Bell state $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

- Bob can measure his qubit

$$
\begin{array}{lll}
p_{\text {Bob }}(0)=\frac{1}{2}, & |\psi\rangle=|0\rangle \otimes|0\rangle, & p_{\text {Alice }}(0)=1 \\
p_{\text {Bob }}(1)=\frac{1}{2}, & |\psi\rangle=|1\rangle \otimes|1\rangle, & p_{\text {Alice }}(1)=1
\end{array}
$$

\Rightarrow Bob does not obtain information about the state

- If Alice measures after Bob she obtains the same result with certainty \Rightarrow The measurement outcomes are perfectly correlated

The Circuit Model of Quantum Computing

Entanglement of bipartite systems

- Let us consider the Bell state $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

- Bob can measure his qubit

$$
\begin{array}{lll}
p_{\text {Bob }}(0)=\frac{1}{2}, & |\psi\rangle=|0\rangle \otimes|0\rangle, & p_{\text {Alice }}(0)=1 \\
p_{\text {Bob }}(1)=\frac{1}{2}, & |\psi\rangle=|1\rangle \otimes|1\rangle, & p_{\text {Alice }}(1)=1
\end{array}
$$

\Rightarrow Bob does not obtain information about the state

- If Alice measures after Bob she obtains the same result with certainty \Rightarrow The measurement outcomes are perfectly correlated
- Choice of measurement at one location affects the other qubit \Rightarrow "Spooky action at a distance"

The Circuit Model of Quantum Computing

Quantum gates

- Quantum mechanics is reversible, $|\psi\rangle$ undergoes unitary evolution under some (time-dependent) Hamiltonian $\mathcal{H}(t)$

$$
|\psi(t)\rangle=\underbrace{T \exp \left(-i \int_{0}^{t} d s \mathcal{H}(s)\right)}_{\text {unitary matrix } U}\left|\psi_{0}\right\rangle
$$

- Quantum gates are represented by unitary matrices

The Circuit Model of Quantum Computing

Quantum gates

- Quantum mechanics is reversible, $|\psi\rangle$ undergoes unitary evolution under some (time-dependent) Hamiltonian $\mathcal{H}(t)$

$$
|\psi(t)\rangle=\underbrace{T \exp \left(-i \int_{0}^{t} d s \mathcal{H}(s)\right)}_{\text {unitary matrix } U}\left|\psi_{0}\right\rangle
$$

- Quantum gates are represented by unitary matrices
- Typically gates only act on a few qubits in a nontrivial way

The Circuit Model of Quantum Computing

Common single-qubit quantum gates

Hadamard	$-H$	$H=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$	$\|0\rangle \rightarrow \frac{1}{\sqrt{2}}(\|0\rangle+\|1\rangle)$ $\|1\rangle \rightarrow \frac{1}{\sqrt{2}}(\|0\rangle-\|1\rangle)$
X	$-X$	$X=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$	$\|0\rangle \rightarrow\|1\rangle$ $\|1\rangle \rightarrow\|0\rangle$
Y	$-Y$	$Y=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$	$\|0\rangle \rightarrow-i\|1\rangle$ $\|1\rangle \rightarrow i\|0\rangle$
Z	$-Z-$	$Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	$\|0\rangle \rightarrow\|0\rangle$ $\|1\rangle \rightarrow-\|1\rangle$

The Circuit Model of Quantum Computing
Common single-qubit rotations

The Circuit Model of Quantum Computing

Common multi-qubit quantum gates
CNOT

The Circuit Model of Quantum Computing

Common multi-qubit quantum gates

CNOT	CNOT $=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
SWAP gate $-\frac{l}{l}$$\|0\rangle \otimes\|0\rangle \rightarrow\|0\rangle \otimes\|0\rangle$ $\|0\rangle \otimes\|1\rangle \rightarrow\|0\rangle \otimes\|1\rangle$ $\|1\rangle \otimes\|0\rangle \rightarrow\|1\rangle \otimes\|1\rangle$ $\|1\rangle \otimes\|1\rangle \rightarrow\|1\rangle \otimes\|0\rangle$	
SWAP $=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$	$\|0\rangle \otimes\|0\rangle \rightarrow\|0\rangle \otimes\|0\rangle$ $\|0\rangle \otimes\|1\rangle \rightarrow\|1\rangle \otimes\|0\rangle$ $\|1\rangle \otimes\|0\rangle \rightarrow\|0\rangle \otimes\|1\rangle$ $\|1\rangle \otimes\|1\rangle \rightarrow\|1\rangle \otimes\|1\rangle$
Toffoli gate $-\quad$ Toffoli $=\left(\begin{array}{ccc}16 \times 6 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$	CCNOT

The Circuit Model of Quantum Computing

Quantum gates

- The reversible classical gates can be implemented on a quantum computer \Rightarrow We can replicate classical computation

The Circuit Model of Quantum Computing

Quantum gates

- The reversible classical gates can be implemented on a quantum computer \Rightarrow We can replicate classical computation
- The Hadamard gate can create superpositions out of a single basis state

$$
|0\rangle-H-|+\rangle \quad|0\rangle \rightarrow|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

- The CNOT gate can create entanglement

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \rightarrow\left|\phi_{12}\right\rangle \neq\left|\phi_{1}\right\rangle \otimes\left|\phi_{2}\right\rangle
$$

The Circuit Model of Quantum Computing

Quantum gates

- The reversible classical gates can be implemented on a quantum computer \Rightarrow We can replicate classical computation
- The Hadamard gate can create superpositions out of a single basis state

$$
|0\rangle-H-|+\rangle \quad|0\rangle \rightarrow|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

- The CNOT gate can create entanglement

- Since quantum mechanics is linear, we can apply gates to superpositions of basis states

$$
\begin{gathered}
\mathrm{CNOT}(\alpha|0\rangle \otimes|0\rangle+\beta|0\rangle \otimes|1\rangle+\gamma|1\rangle \otimes|0\rangle+\delta|1\rangle \otimes|1\rangle) \\
\quad=\alpha|0\rangle \otimes|0\rangle+\beta|0\rangle \otimes|1\rangle+\gamma|1\rangle \otimes|1\rangle+\delta|1\rangle \otimes|0\rangle
\end{gathered}
$$

The Circuit Model of Quantum Computing

Quantum circuits

- Combining multiple gates we can build quantum circuits

The Circuit Model of Quantum Computing

Quantum circuits

- Combining multiple gates we can build quantum circuits

- Depth of a circuit: maximum length of a directed path from the input to the output

The Circuit Model of Quantum Computing

Quantum circuits

- Combining multiple gates we can build quantum circuits

- Depth of a circuit: maximum length of a directed path from the input to the output
- Extracting information: final measurement of the qubits (usually in the computational basis)

The Circuit Model of Quantum Computing

Why is Quantum Computing more powerful?

- The Hilbert space of N qubits is the tensor product $\underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{N \text { times }}$
\Rightarrow Dimension 2^{N}, number of basis states grows exponentially

The Circuit Model of Quantum Computing

Why is Quantum Computing more powerful?

- The Hilbert space of N qubits is the tensor product $\underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{N \text { times }}$
\Rightarrow Dimension 2^{N}, number of basis states grows exponentially
- We can build superpositions of basis states and apply unitary gates to them

$$
|0\rangle+|1\rangle-U \quad U|0\rangle+U|1\rangle
$$

\Rightarrow "Quantum parallelism"

The Circuit Model of Quantum Computing

Why is Quantum Computing more powerful?

- The Hilbert space of N qubits is the tensor product $\underbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}_{N \text { times }}$
\Rightarrow Dimension 2^{N}, number of basis states grows exponentially
- We can build superpositions of basis states and apply unitary gates to them

$$
|0\rangle+|1\rangle-U \quad U|0\rangle+U|1\rangle
$$

\Rightarrow "Quantum parallelism"

- Multiple qubits can be entangled

\Rightarrow Correlations that have no classical analog

The Circuit Model of Quantum Computing

Example

- Simple circuit preparing an entangled state (Bell state)

The Circuit Model of Quantum Computing

Example

- Simple circuit preparing an entangled state (Bell state)

- $|0\rangle \otimes|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle$

$$
=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle)
$$

The Circuit Model of Quantum Computing

Example

- Simple circuit preparing an entangled state (Bell state)

- $|0\rangle \otimes|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle$

$$
=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle)
$$

$$
\bullet \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)
$$

The Circuit Model of Quantum Computing

Example

- Simple circuit preparing an entangled state (Bell state)

- $|0\rangle \otimes|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle$

$$
=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle)
$$

$\bullet \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

- Measurement: $p(|0\rangle \otimes|0\rangle)=\frac{1}{2}, p(|1\rangle \otimes|1\rangle)=\frac{1}{2}$

The Circuit Model of Quantum Computing

Example

- Simple circuit preparing an entangled state (Bell state)

- $|0\rangle \otimes|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle$

$$
=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle)
$$

$\bullet \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|0\rangle) \xrightarrow{\text { CNOT }} \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$

- Measurement: $p(|0\rangle \otimes|0\rangle)=\frac{1}{2}, p(|1\rangle \otimes|1\rangle)=\frac{1}{2}$
- Results on actual quantum hardware (ibmq_vigo)

The Circuit Model of Quantum Computing

Where do we stand?
Current NISQ devices

- Small or intermediate scale
- Considerable amount of noise
- Only shallow circuits can be executed faithfully
- Quantum advantage demonstrated

The Circuit Model of Quantum Computing

Where do we stand?

Current NISQ devices

- Small or intermediate scale
- Considerable amount of noise
- Only shallow circuits can be executed faithfully
- Quantum advantage demonstrated

Quantum algorithms "useful" problems

- Large number of qubits
- Deep circuits
- Quantum error correction necessary
- So far only proof of principle demonstrations

The Circuit Model of Quantum Computing

Where do we stand?

Current NISQ devices

- Small or intermediate scale
- Considerable amount of noise
- Only shallow circuits can be executed faithfully
- Quantum advantage demonstrated

Quantum algorithms "useful" problems

- Large number of qubits
- Deep circuits
- Quantum error correction necessary
- So far only proof of principle demonstrations

How can we utilize existing quantum hardware in a beneficial way?

The Circuit Model of Quantum Computing

Hybrid quantum-classical algorithms

- Combine classical and quantum devices
- Rely on classical computing where possible
- Use the quantum device as a coprocessor
- Tackle the classically hard/intractable part of the problem
- Feed the classical data obtained from a measurement back to the classical computer

The Circuit Model of Quantum Computing

Hybrid quantum-classical algorithms

- Combine classical and quantum devices
- Rely on classical computing where possible
- Use the quantum device as a coprocessor
- Tackle the classically hard/intractable part of the problem
- Feed the classical data obtained from a measurement back to the classical computer

Even modest quantum hardware can yield advantages

The Circuit Model of Quantum Computing

Variational Quantum Eigensolver

- Algorithm to find ground states of quantum Hamiltonians \mathcal{H}
- Define a cost function $\mathcal{C}(\vec{\theta})=\langle\psi(\vec{\theta})| \mathcal{H}|\psi(\vec{\theta})\rangle, \vec{\theta}=\mathbb{R}^{n}$

The Circuit Model of Quantum Computing

Variational Quantum Eigensolver

- Algorithm to find ground states of quantum Hamiltonians \mathcal{H}
- Define a cost function $\mathcal{C}(\vec{\theta})=\langle\psi(\vec{\theta})| \mathcal{H}|\psi(\vec{\theta})\rangle, \vec{\theta}=\mathbb{R}^{n}$
- Realize a parametric ansatz $|\psi(\vec{\theta})\rangle$ by a parametric quantum circuit
- Provided $|\psi(\vec{\theta})\rangle$ is expressive enough the minimum of $\mathcal{C}(\vec{\theta})$ is obtained for the ground state of \mathcal{H}

The Circuit Model of Quantum Computing

Variational Quantum Eigensolver

- Algorithm to find ground states of quantum Hamiltonians \mathcal{H}
- Define a cost function $\mathcal{C}(\vec{\theta})=\langle\psi(\vec{\theta})| \mathcal{H}|\psi(\vec{\theta})\rangle, \vec{\theta}=\mathbb{R}^{n}$
- Realize a parametric ansatz $|\psi(\vec{\theta})\rangle$ by a parametric quantum circuit
- Provided $|\psi(\vec{\theta})\rangle$ is expressive enough the minimum of $\mathcal{C}(\vec{\theta})$ is obtained for the ground state of \mathcal{H}
- Finding the minimum: feedback loop between the classical computer and the quantum device

The Circuit Model of Quantum Computing

Variational Quantum Eigensolver

- Algorithm to find ground states of quantum Hamiltonians \mathcal{H}
- Define a cost function $\mathcal{C}(\vec{\theta})=\langle\psi(\vec{\theta})| \mathcal{H}|\psi(\vec{\theta})\rangle, \vec{\theta}=\mathbb{R}^{n}$
- Realize a parametric ansatz $|\psi(\vec{\theta})\rangle$ by a parametric quantum circuit
- Provided $|\psi(\vec{\theta})\rangle$ is expressive enough the minimum of $\mathcal{C}(\vec{\theta})$ is obtained for the ground state of \mathcal{H}
- Finding the minimum: feedback loop between the classical computer and the quantum device

The Circuit Model of Quantum Computing

Variational Quantum Algorithms
classical computer

quantum device

Advantages

- Flexible ansatz design
- Hamiltonian exists only as a measurement
- Partially resilient to systematic errors

The Circuit Model of Quantum Computing

Variational Quantum Algorithms
classical computer

Challenges

- How to choose an expressive ansatz?
- How to avoid redundant parameters?
- How to deal with effects of noise?

Q The Circuit Model of Quantum Computing

- Dimensional Expressivity Analysis

S immary \& Outlook

Dimensional Expressivity Analysis

Number of parameters in the ansatz circuit should be

- large for solutions to be reachable
- large in order not to introduce artificial local optima
- small to reduce noise
- small for efficient use of many classical optimizers

Number of parameters in the ansatz circuit should be

- large for solutions to be reachable
- large in order not to introduce artificial local optima
- small to reduce noise
- small for efficient use of many classical optimizers

Optimal circuit for VQE

- maximally expressive: be able to generate all (physically relevant) states
- minimal: no unnecessary parametric gates

Dimensional Expressivity Analysis

Number of parameters in the ansatz circuit should be

- large for solutions to be reachable
- large in order not to introduce artificial local optima
- small to reduce noise
- small for efficient use of many classical optimizers

Optimal circuit for VQE

- maximally expressive: be able to generate all (physically relevant) states
- minimal: no unnecessary parametric gates

Can we develop a mathematical framework to determine if a circuit is both minimal and maximally expressive?

Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

- Parametric quantum circuit with parameters $\vec{\theta} \in P \subseteq \mathbb{R}^{n}$ generating $|C(\vec{\theta})\rangle$

- Treat the parametric circuit as a map that maps the input parameters to the state space of the quantum device

$$
C: \vec{\theta} \mapsto|C(\vec{\theta})\rangle=R_{Z}\left(\theta_{8}\right) \ldots R_{Y}\left(\theta_{1}\right)|0\rangle \otimes|0\rangle
$$

- Parameter space P : real manifold
- Image of C : circuit manifold \mathcal{M}
- Which parameters are necessary to generate the circuit manifold \mathcal{M} ?

Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

- The tangent space of \mathcal{M} is spanned by the tangent vectors $\left|\partial_{j} C(\vec{\theta})\right\rangle$

Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

- The tangent space of \mathcal{M} is spanned by the tangent vectors $\left|\partial_{j} C(\vec{\theta})\right\rangle$
- θ_{k} is redundant iff $\left|\partial_{k} C(\vec{\theta})\right\rangle$ is a linear combination of $\left|\partial_{j} C(\vec{\theta})\right\rangle, j \neq k$

Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

- The tangent space of \mathcal{M} is spanned by the tangent vectors $\left|\partial_{j} C(\vec{\theta})\right\rangle$
- θ_{k} is redundant iff $\left|\partial_{k} C(\vec{\theta})\right\rangle$ is a linear combination of $\left|\partial_{j} C(\vec{\theta})\right\rangle, j \neq k$

Iterative procedure to identify redundant parameters

- θ_{1} is never redundant as long as the corresponding parametric gate is nontrivial
- Check whether $\left|\partial_{k+1} C(\vec{\theta})\right\rangle$ is a linear combination of $\left|\partial_{1} C(\vec{\theta})\right\rangle, \ldots,\left|\partial_{k} C(\vec{\theta})\right\rangle$
- Remove redundant parameters

Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

- The tangent space of \mathcal{M} is spanned by the tangent vectors $\left|\partial_{j} C(\vec{\theta})\right\rangle$
- θ_{k} is redundant iff $\left|\partial_{k} C(\vec{\theta})\right\rangle$ is a linear combination of $\left|\partial_{j} C(\vec{\theta})\right\rangle, j \neq k$

Iterative procedure to identify redundant parameters

- θ_{1} is never redundant as long as the corresponding parametric gate is nontrivial
- Check whether $\left|\partial_{k+1} C(\vec{\theta})\right\rangle$ is a linear combination of $\left|\partial_{1} C(\vec{\theta})\right\rangle, \ldots,\left|\partial_{k} C(\vec{\theta})\right\rangle$
- Remove redundant parameters
- Parameter removal implies setting the parameter to a constant value
- Rotation gates (e.g. $\exp \left(-\frac{i}{2} \vartheta X\right)$): choose the parameter $\vartheta=0$ to achieve an $\mathbb{1}$

Dimensional Expressivity Analysis

Checking for parameter independence

- θ_{1} is never redundant as long as corresponding parametric gate is nontrivial
- For $\theta_{k}, k=2, \ldots, n$ repeat the following steps
- Since P is a real manifold, we have to consider the real Jacobian

$$
J_{k}=\left(\begin{array}{ccc}
\Re\left|\partial_{1} C\right\rangle & \ldots & \Re\left|\partial_{k} C\right\rangle \\
\mid & & \mid \\
\mid & & \mid \\
\Im\left|\partial_{1} C\right\rangle & \ldots & \Im\left|\partial_{k} C\right\rangle \\
\mid & & \mid
\end{array}\right)
$$

- If the matrix J_{k} has full rank then θ_{k} is independent
- Instead of checking the rank of J_{k} one can also compute the rank of $S_{k}=J_{k}^{T} J_{k}$

Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

- Memory requirements on a classical computer: exponential in the number of qubits N because J_{k} has dimensions $2^{N+1} \times k$

Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

- Memory requirements on a classical computer: exponential in the number of qubits N because J_{k} has dimensions $2^{N+1} \times k$

Can we use a hybrid-quantum classical approach for the Dimensonal Expressivity Analysis?

Dimensional Expressivity Analysis

Hybrid Quantum-Classical Dimensional Expressivity Analysis

- Since the first parameter is always nontrivial $S_{1}=\frac{1}{4}$
- For $k \geq 2$ the $k \times k$ matrices $S_{k}=J_{k}^{T} J_{k}$ can be cast into the form

$$
S_{k}=\left(\begin{array}{cc}
S_{k-1} & A_{k} \\
A_{k}^{T} & \frac{1}{4}
\end{array}\right) \quad \text { with } \quad A_{k}=\left(\begin{array}{c}
\Re\left\langle\partial_{1} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle \\
\vdots \\
\Re\left\langle\partial_{k-1} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle
\end{array}\right)
$$

Dimensional Expressivity Analysis

Hybrid Quantum-Classical Dimensional Expressivity Analysis

- Since the first parameter is always nontrivial $S_{1}=\frac{1}{4}$
- For $k \geq 2$ the $k \times k$ matrices $S_{k}=J_{k}^{T} J_{k}$ can be cast into the form

$$
S_{k}=\left(\begin{array}{cc}
S_{k-1} & A_{k} \\
A_{k}^{T} & \frac{1}{4}
\end{array}\right) \quad \text { with } \quad A_{k}=\left(\begin{array}{c}
\Re\left\langle\partial_{1} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle \\
\vdots \\
\Re\left\langle\partial_{k-1} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle
\end{array}\right)
$$

- For $R_{G}(\vartheta)=\exp \left(-\frac{i}{2} \vartheta G\right)$ where G is a gate, the derivative is essentially a circuit

$$
\left|R_{G}\right\rangle=|0\rangle-\overline{R_{G}(\vartheta)} \quad \Rightarrow \quad 2 i\left|\partial_{\theta} R_{G}\right\rangle=|0\rangle-R_{G}(\vartheta)-G
$$

- Up to an imaginary factor $\left|\partial_{j} C(\vec{\theta})\right\rangle$ can be prepared on a quantum device

Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

- If we can efficiently obtain $\Re\left\langle\partial_{j} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle$ on the quantum device, we can carry out dimensional expressivity analysis efficiently

Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

- If we can efficiently obtain $\Re\left\langle\partial_{j} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle$ on the quantum device, we can carry out dimensional expressivity analysis efficiently
- Single-qubit example: $|C(\vec{\theta})\rangle=R_{Z}\left(\theta_{2}\right) R_{X}\left(\theta_{1}\right)|0\rangle$

$$
|0\rangle-R_{X}\left(\theta_{1}\right) \quad R_{Z}\left(\theta_{2}\right)
$$

Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

- If we can efficiently obtain $\Re\left\langle\partial_{j} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle$ on the quantum device, we can carry out dimensional expressivity analysis efficiently
- Single-qubit example: $|C(\vec{\theta})\rangle=R_{Z}\left(\theta_{2}\right) R_{X}\left(\theta_{1}\right)|0\rangle$

$$
|0\rangle-R_{X}\left(\theta_{1}\right) \quad R_{Z}\left(\theta_{2}\right)
$$

- Circuit for obtaining $\Re\left\langle\partial_{1} C(\vec{\theta}) \mid \partial_{2} C(\vec{\theta})\right\rangle$

Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

- If we can efficiently obtain $\Re\left\langle\partial_{j} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle$ on the quantum device, we can carry out dimensional expressivity analysis efficiently
- Single-qubit example: $|C(\vec{\theta})\rangle=R_{Z}\left(\theta_{2}\right) R_{X}\left(\theta_{1}\right)|0\rangle$

$$
|0\rangle-R_{X}\left(\theta_{1}\right) \quad R_{Z}\left(\theta_{2}\right)
$$

- Circuit for obtaining $\Re\left\langle\partial_{1} C(\vec{\theta}) \mid \partial_{2} C(\vec{\theta})\right\rangle$

- Real part of the overlap is proportional to the probability for the ancilla being in $|0\rangle$
S. Lloyd, M. Mohseni, P. Rebentrost, arXiv:1307.0411 (2013)

Dimensional Expressivity Analysis

Results for a single qubit on quantum hardware

- Circuit we examine

$$
\begin{aligned}
& C\left(\theta_{4}, \theta_{3}, \theta_{2}, \theta_{1}\right)= \\
& R_{Y}\left(\theta_{4}\right) R_{Z}\left(\theta_{3}\right) R_{X}\left(\theta_{2}\right) R_{Z}\left(\theta_{1}\right)|0\rangle
\end{aligned}
$$

- Number of independent parameters: 3
- $R_{Y}\left(\theta_{4}\right)$ is redundant

Dimensional Expressivity Analysis

Results for a single qubit on quantum hardware

- Circuit we examine
- Spectrum of $S_{k}, k \geq 2$

$$
\begin{aligned}
& C\left(\theta_{4}, \theta_{3}, \theta_{2}, \theta_{1}\right)= \\
& \quad R_{Y}\left(\theta_{4}\right) R_{Z}\left(\theta_{3}\right) R_{X}\left(\theta_{2}\right) R_{Z}\left(\theta_{1}\right)|0\rangle
\end{aligned}
$$

- $R_{Y}\left(\theta_{4}\right)$ is redundant
- Results on IBM quantum hardware

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)

Dimensional Expressivity Analysis

Results for two qubits on quantum hardware

- Circuit we examine

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)

Dimensional Expressivity Analysis

Summary

- Allows for optimizing a given circuit by identifying and removing redundant parameters
- Makes it possible to remove unwanted symmetries as well
- Can be efficiently performed using a hybrid quantum-classical approach

Motivation
Q The Circuit Model of Quantum Computing
© Dimensional Expressivity Analysis

- Measurement Error Mitigation

Measurement Error Mitigation

Noise on current quantum devices

Measurement Error Mitigation

Noise on current quantum devices

- Errors arise from:
- Imperfect gates and crosstalk
- Coupling to environment
- Measurement/readout

Measurement Error Mitigation

Noise on current quantum devices

- Errors arise from:
- Imperfect gates and crosstalk
- Coupling to environment
- Measurement/readout

- Typical error rates
- Single-qubit gates: $0.1 \%-0.3 \%$
- Two-qubit gates: $0.3 \%-5 \%$
- Measurement/readout: 1\%-30\%
- Error mitigation: Try to correct for (some of) these errors

Measurement Error Mitigation

- Focus on a simple low-overhead, resource-efficient mitigation scheme suitable even for small devices
- Assumptions:
- Only measurement errors, no other sources of noise
- Uncorrelated bit flips, readout errors are not correlated between qubits
- Bit flips occur with constant flip probability for each qubit

Measurement Error Mitigation

- Focus on a simple low-overhead, resource-efficient mitigation scheme suitable even for small devices
- Assumptions:
- Only measurement errors, no other sources of noise
- Uncorrelated bit flips, readout errors are not correlated between qubits
- Bit flips occur with constant flip probability for each qubit
- Idea: construct random operators \tilde{O} such that such the expectation value subject to noise corresponds to the true expectation value

$$
\mathbb{E}\langle\psi| \tilde{O}|\psi\rangle=\langle\psi| O|\psi\rangle
$$

Measurement Error Mitigation

Single-qubit example

- Consider a single qubit with flip probabilities $0 \xrightarrow{p_{0}} 1,1 \xrightarrow{p_{1}} 0$ and measure the
$Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ operator

Readout	Bit Flips	Probability	Noisy operator
correct	$0 \rightarrow 0,1 \rightarrow 1$	$\left(1-p_{0}\right)\left(1-p_{1}\right)$	$\tilde{Z}=Z$

Measurement Error Mitigation

Single-qubit example

- Consider a single qubit with flip probabilities $0 \xrightarrow{p_{0}} 1,1 \xrightarrow{p_{1}} 0$ and measure the
$Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ operator

Readout	Bit Flips	Probability	Noisy operator
correct	$0 \rightarrow 0,1 \rightarrow 1$	$\left(1-p_{0}\right)\left(1-p_{1}\right)$	$\tilde{Z}=Z$
incorrect	$0 \rightarrow 1,1 \rightarrow 0$	$p_{0} p_{1}$	$\tilde{Z}=-Z$

Measurement Error Mitigation

Single-qubit example

- Consider a single qubit with flip probabilities $0 \xrightarrow{p_{0}} 1,1 \xrightarrow{p_{1}} 0$ and measure the

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { operator }
$$

Readout	Bit Flips	Probability	Noisy operator
correct	$0 \rightarrow 0,1 \rightarrow 1$	$\left(1-p_{0}\right)\left(1-p_{1}\right)$	$\tilde{Z}=Z$
incorrect	$0 \rightarrow 1,1 \rightarrow 0$	$p_{0} p_{1}$	$\tilde{Z}=-Z$
0 outcome incorrect	$0 \rightarrow 1,1 \rightarrow 1$	$p_{0}\left(1-p_{1}\right)$	$\tilde{Z}=-\mathbb{1}$

Measurement Error Mitigation

Single-qubit example

- Consider a single qubit with flip probabilities $0 \xrightarrow{p_{0}} 1,1 \xrightarrow{p_{1}} 0$ and measure the

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { operator }
$$

Readout	Bit Flips	Probability	Noisy operator
correct	$0 \rightarrow 0,1 \rightarrow 1$	$\left(1-p_{0}\right)\left(1-p_{1}\right)$	$\tilde{Z}=Z$
incorrect	$0 \rightarrow 1,1 \rightarrow 0$	$p_{0} p_{1}$	$\tilde{Z}=-Z$
0 outcome incorrect	$0 \rightarrow 1,1 \rightarrow 1$	$p_{0}\left(1-p_{1}\right)$	$\tilde{Z}=-\mathbb{1}$
1 outcome incorrect	$0 \rightarrow 0,1 \rightarrow 0$	$\left(1-p_{0}\right) p_{1}$	$\tilde{Z}=\mathbb{1}$

Measurement Error Mitigation

Single-qubit example

- Consider a single qubit with flip probabilities $0 \xrightarrow{p_{0}} 1,1 \xrightarrow{p_{1}} 0$ and measure the

$$
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \text { operator }
$$

Readout	Bit Flips	Probability	Noisy operator
correct	$0 \rightarrow 0,1 \rightarrow 1$	$\left(1-p_{0}\right)\left(1-p_{1}\right)$	$\tilde{Z}=Z$
incorrect	$0 \rightarrow 1,1 \rightarrow 0$	$p_{0} p_{1}$	$\tilde{Z}=-Z$
0 outcome incorrect	$0 \rightarrow 1,1 \rightarrow 1$	$p_{0}\left(1-p_{1}\right)$	$\tilde{Z}=-\mathbb{1}$
1 outcome incorrect	$0 \rightarrow 0,1 \rightarrow 0$	$\left(1-p_{0}\right) p_{1}$	$\tilde{Z}=\mathbb{1}$

- Expected value of the noisy operator

$$
\begin{aligned}
& \mathbb{E} \tilde{Z}=\left(1-p_{0}\right)\left(1-p_{1}\right) Z-p_{0} p_{1} Z-p_{0}\left(1-p_{1}\right) \mathbb{1}+\left(1-p_{0}\right) p_{1} \mathbb{1} \\
&=\left(1-p_{0}-p_{1}\right) Z+\left(p_{0}-p_{1}\right) \mathbb{1} \\
& \text { Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Xiaoyang Wang, arXiv:2007. 03663 (2020) }
\end{aligned}
$$

Measurement Error Mitigation

Single-qubit Example

- Expected value of the noisy operator

$$
\mathbb{E} \tilde{Z}=\left(1-p_{0}-p_{1}\right) Z+\left(p_{0}-p_{1}\right) \mathbb{1}
$$

- Reconstruction of the true expectation value

Measurement Error Mitigation

Single-qubit Example

- Expected value of the noisy operator

$$
\mathbb{E} \tilde{Z}=\left(1-p_{0}-p_{1}\right) Z+\left(p_{0}-p_{1}\right) \mathbb{1}
$$

- Reconstruction of the true expectation value

- Calibration of the flip probabilities

Measurement Error Mitigation

Generalization to multiple qubits and arbitrary operators

- General formula for $\tilde{O}_{k} \in\left\{\tilde{\mathbb{I}}_{k}, \tilde{Z}_{k}\right\}$

$$
\mathbb{E}\left(\tilde{O}_{N} \otimes \cdots \otimes \tilde{O}_{1}\right)=\sum_{O \in\{1, Z\}^{\otimes N}} \Gamma\left(O_{N} \mid \tilde{O}_{N}\right) O_{N} \otimes \cdots \otimes \Gamma\left(O_{1} \mid \tilde{O}_{1}\right) O_{1}
$$

where

$$
\Gamma\left(O_{q} \mid \tilde{O}_{q}\right)= \begin{cases}1-p_{q, 0}-p_{q, 1} & \text { for } \tilde{O}_{q}=\tilde{Z}_{q} \wedge O_{q}=Z_{q} \\ p_{q, 1}-p_{q, 0} & \text { for } \tilde{O}_{q}=\tilde{Z}_{q} \wedge O_{q}=\mathbb{1}_{q} \\ 1 & \text { for } O_{q}=\mathbb{1}_{q} \wedge \tilde{O}_{q}=\tilde{\mathbb{1}}_{q} \\ 0 & \text { for } O_{q}=Z_{q} \wedge \tilde{O}_{q}=\tilde{\mathbb{1}}_{q}\end{cases}
$$

- Set of equations isinvertible as long as $p_{q, 0}+p_{q, 1} \neq 1$

Measurement Error Mitigation

Two-qubit case, classical simulation

- Results for a classical simulation with readout errors only
- Measure the expectation value of $Z \otimes Z$ for 1050 random parameter sets
- Monitor the average and standard deviation of

$$
|\langle\psi| Z \otimes Z| \psi\rangle_{\text {exact }}-\langle\psi| Z \otimes Z|\psi\rangle_{\text {mitigated }} \mid
$$

Measurement Error Mitigation

Two-qubit case, classical simulation

- Results for a classical simulation with readout errors only
- Measure the expectation value of $Z \otimes Z$ for 1050 random parameter sets
- Monitor the average and standard deviation of

$$
|\langle\psi| Z \otimes Z| \psi\rangle_{\text {exact }}-\langle\psi| Z \otimes Z|\psi\rangle_{\text {mitigated }} \mid
$$

\Rightarrow Mitigated results show power law decay $s^{-1 / 2}$ just as in the noise-free case
Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Xiaoyang Wang, arXiv:2007.03663 (2020)

Measurement Error Mitigation

Two-qubit case, quantum hardware

- Results for IBM quantum hardware
- Measure the expectation value of $Z \otimes Z$ for 1050 random parameter sets
- Monitor the average and standard deviation of

$$
|\langle\psi| Z \otimes Z| \psi\rangle_{\text {exact }}-\langle\psi| Z \otimes Z|\psi\rangle_{\text {mitigated }} \mid
$$

Measurement Error Mitigation

Two-qubit case, quantum hardware

- Results for IBM quantum hardware
- Measure the expectation value of $Z \otimes Z$ for 1050 random parameter sets
- Monitor the average and standard deviation of

$$
|\langle\psi| Z \otimes Z| \psi\rangle_{\text {exact }}-\langle\psi| Z \otimes Z|\psi\rangle_{\text {mitigated }} \mid
$$

\Rightarrow Improvement of the error up to one order of magnitude

Summary

- For local Hamiltonians the overhead cost is polynomial
- It is possible to do a probabilistic version of the mitigation scheme
- The idea of constructing random operators is very general and can potentially be applied to mitigate other kinds of errors
- Incorporate correlations between qubits
- Relaxation errors

Motivation
Q The Circuit Model of Quantum Computing
© Dimensional Expressivity Analysis
(1) Weasmement Eror Mithetrion
© Summary \& Outlook

Summary

- Noisy intermediate-scale quantum devices are available
- Hybrid-quantum classical algorithms are promising for these devices
- Dimensional Expressivity Analysis allows for designing minimal maximally expressive circuits for these applications
- Measurement/readout errors can be efficiently mitigated with low overhead

Summary \& Outlook

Summary

- Noisy intermediate-scale quantum devices are available
- Hybrid-quantum classical algorithms are promising for these devices
- Dimensional Expressivity Analysis allows for designing minimal maximally expressive circuits for these applications
- Measurement/readout errors can be efficiently mitigated with low overhead

Outlook

- Generalize Dimensional Expressivity Analysis to be able to quantify the approximation error of a given ansatz
- Extend the mitigation scheme to various other types of error
- Quantum hardware is advancing quickly

Thank you for your attention!

Questions?

Appendix A: Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

- $\Re\left\langle\partial_{j} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle$ can be obtained on the quantum device

Appendix A: Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

- $\Re\left\langle\partial_{j} C(\vec{\theta}) \mid \partial_{k} C(\vec{\theta})\right\rangle$ can be obtained on the quantum device
- In general $\Re\langle\psi \mid \phi\rangle$ can be measured using an ancilla qubit provided one can prepare the state

$$
|\chi\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|\psi\rangle+|1\rangle \otimes|\phi\rangle)
$$

- Applying a Hadamard gate on the ancilla one finds

$$
\left.(H \otimes \mathbb{1})|\chi\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes(|\psi\rangle+|\phi\rangle)+|1\rangle \otimes(|\psi\rangle-\mid \phi)\rangle\right)
$$

- Probability of measuring the ancilla in zero

$$
p(\text { ancilla }=0)=\frac{1}{2}(1+\Re\langle\psi \mid \phi\rangle)
$$

