Making the most out of noisy quantum computers:
Strategies for circuit design and error mitigation

Stefan Kiihn
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On the verge of the NISQ era

» Noisy Intermediate-Scale Quantum
(NISQ) technology (50-100 qubits) is
already available

 First small/scale devices are
commercially available
« Noise significantly limits the circuit
depths that can be executed reliably
» Not fault tolerant
» No quantum error correction
* Current NISQ devices have already
outperformed classical devices
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Quantum supremacy using a programmable
superconducting processor
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The Circuit Model of Quantum Computing

Quantum bit
* Qubit: two-dimensional quantum system
» Hilbert space H with basis {|0),|1)}, called the computational basis

» Contrary to classical bits, it can be in a superposition
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The Circuit Model of Quantum Computing

Quantum bit
* Qubit: two-dimensional quantum system
» Hilbert space H with basis {|0),|1)}, called the computational basis

» Contrary to classical bits, it can be in a superposition

W)=al®)+8ll), aBeC, |aP+|fP=1

* Measuring the qubit in the computational basis collapses the state onto one of the
basis states




The Circuit Model of Quantum Computing

Multiple quantum bits
* N qubits: Hilbert space is the tensor product H ® --- @ H
—_———

N times
* Most general state in the computational basis

1




The Circuit Model of Quantum Computing

Entanglement of bipartite systems
o Consider bipartite systems Ha ® Hpg

e A quantum state that can be factored as a tensor product of states of its local
constituents is called separable state or product state
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* Otherwise the state is entangled
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The Circuit Model of Quantum Computing

Entanglement of bipartite systems
e Consider bipartite systems H4 ® Hpg

e A quantum state that can be factored as a tensor product of states of its local
constituents is called separable state or product state

V) = [a) ® |¥B)
» Otherwise the state is entangled

Example

. \%):%1(\0>®!0>+\0>f9!1>+\1>®!0>+|1>®\1>)
= 2.(0) + 1)) ® 25(10) + 1)
= product state

o [0F) = 75 (10) ®10) +[1) ®[1))

= entangled state (Bell state)
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Entanglement of bipartite systems
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The Circuit Model of Quantum Computing

Entanglement of bipartite systems

o Let us consider the Bell state |®1) = % (10y ®|0) + |1) ® |1))

» Bob can measure his qubit
1
pBob(O) = Ea |¢> = |O> ® |0> ) pAIice(O) =1
1




The Circuit Model of Quantum Computing

Quantum gates
* Quantum mechanics is reversible, 1)) undergoes unitary evolution under some
(time-dependent) Hamiltonian H(t)
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unitary matrix U

* Quantum gates are represented by unitary matrices




The Circuit Model of Quantum Computing

Quantum gates
* Quantum mechanics is reversible, 1)) undergoes unitary evolution under some
(time-dependent) Hamiltonian H(t)

() = Tew (i | t ) ) 1)

unitary matrix U

* Quantum gates are represented by unitary matrices
» Typically gates only act on a few qubits in a nontrivial way




The Circuit Model of Quantum Computing

Common single-qubit quantum gates

E |o>%%(|o>+|1>)
Hadamard H=<f _@) 1
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X [X] XZ(l 0) 1) - [0)




The Circuit Model of Quantum Computing

Common single-qubit rotations

Rx ()

Rx ()

Rx(0) = exp (—i§X)

Ry (0) = exp (—idY)
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Common multi-qubit quantum gates
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The Circuit Model of Quantum Computing

Common multi-qubit quantum gates
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Quantum gates
o The reversible classical gates can be implemented on a quantum computer
= We can replicate classical computation
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Quantum gates
o The reversible classical gates can be implemented on a quantum computer
= We can replicate classical computation
o The Hadamard gate can create superpositions out of a single basis state
1

) +) |0) = |+) = 7 (10) + 1))
* The CNOT gate can create entanglement

1) —e— [91) ® |12) — |p12) # |b1) ® |@2)
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Quantum circuits

» Combining multiple gates we can build quantum circuits
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Quantum circuits

e Combining multiple gates we can build quantum circuits
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The Circuit Model of Quantum Computing

Why is Quantum Computing more powerful?
e The Hilbert space of N qubits is the tensor product H ® --- @ H
————

N times
= Dimension 2V, number of basis states grows exponentially
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The Circuit Model of Quantum Computing

Why is Quantum Computing more powerful?
e The Hilbert space of N qubits is the tensor product H ® --- @ H
————

N times
= Dimension 2V, number of basis states grows exponentially

* We can build superpositions of basis states and apply unitary gates to them

0) +[1) Ul0) + UJ1)

= “Quantum parallelism”

+ Multiple qubits can be entangled
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Example

» Simple circuit preparing an entangled state (Bell state)
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Example

» Simple circuit preparing an entangled state (Bell state)
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Example

» Simple circuit preparing an entangled state (Bell state)
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Example

» Simple circuit preparing an entangled state (Bell state)

® [0)®[0) = 15 (0) + |1)) ® [0)
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0)

0) —=
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® Measurement: p(|0) ® |0)) =1, p(|1) ® [1)) = 3
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Example

» Simple circuit preparing an entangled state (Bell state)

® [0)®[0) = 15 (0) + |1)) ® [0)

=L (0@ |0) + 1) © [0))

0)

0) —=

* Resu

e L(nel)+me0) L L (0)o0)+1) o)

® Measurement: p(|0) ® |0)) =1, p(|1) ® [1)) = 3
Its on actual quantum hardware (ibmq_ vigo)
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Where do we stand?

Current NISQ devices
» Small or intermediate scale
» Considerable amount of noise

# Only shallow circuits can be executed
faithfully

* Quantum advantage demonstrated
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# Only shallow circuits can be executed * Quantum error correction necessary
faithfully » So far only proof of principle

* Quantum advantage demonstrated demonstrations




The Circuit Model of Quantum Computing

Where do we stand?

Current NISQ devices Quantum algorithms “useful” problems
* Small or intermediate scale » Large number of qubits
» Considerable amount of noise * Deep circuits
* Only shallow circuits can be executed * Quantum error correction necessary
faithfully » So far only proof of principle
* Quantum advantage demonstrated demonstrations

How can we utilize existing quantum hardware in a beneficial way?




The Circuit Model of Quantum Computing

Hybrid quantum-classical algorithms
e Combine classical and quantum devices

® Rely on classical computing where possible
® Use the quantum device as a coprocessor

» Tackle the classically hard/intractable part of the problem
» Feed the classical data obtained from a measurement back to the classical computer

quantum device

classical data

5
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Hybrid quantum-classical algorithms
e Combine classical and quantum devices
® Rely on classical computing where possible

» Use the quantum device as a coprocessor

» Tackle the classically hard/intractable part of the problem
» Feed the classical data obtained from a measurement back to the classical computer

classical data

— ~—
—
]

classical data

-

Even modest quantum hardware can yield advantages
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» Algorithm to find ground states of quantum Hamiltonians H

« Define a cost function C(6) = (¢(0)|H[(0)), 6 = R”
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Variational Quantum Eigensolver
o Algorithm to find ground states of quantum Hamiltonians H
« Define a cost function C(A) = (1(A)|H|(6)), § = R”
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Provided [¢(0)) is expressive enough the minimum of C(6) is obtained for the
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Variational Quantum Eigensolver
o Algorithm to find ground states of quantum Hamiltonians H
« Define a cost function C(A) = (1(A)|H|(6)), § = R”

—

» Realize a parametric ansatz [¢)(0)) by a parametric quantum circuit

« Provided |1)(f)) is expressive enough the minimum of C(6) is obtained for the
ground state of H

« Finding the minimum: feedback loop between the classical computer and the

quantum device

Peruzzo et al., Nat. Commun. 5, 1 (2014)
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The Circuit Model of Quantum Computing

Variational Quantum Eigensolver

» Algorithm to find ground states of quantum Hamiltonians H

« Define a cost function C(0) = ((0)|H|4(6)), 6 = R”

« Realize a parametric ansatz [¢)(0)) by a parametric quantum circuit

« Provided [1/(6)) is expressive enough the minimum of C(f) is obtained for the
ground state of H

* Finding the minimum: feedback loop between the classical computer and the
quantum device

—




The Circuit Model of Quantum Computing

Variational Quantum Algorithms

§|o> ) 7y (65)
§|o> R, (62) R, (0)
o) —{7,(0) R, (07)
o) {7, (0a) )

Advantages
» Flexible ansatz design

* Hamiltonian exists only as a
measurement

» Partially resilient to systematic
errors
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Variational Quantum Algorithms

Advantages Challenges
» Flexible ansatz design » How to choose an expressive
* Hamiltonian exists only as a ansatz?
measurement * How to avoid redundant
parameters?

» Partially resilient to systematic
errors » How to deal with effects of noise?
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Dimensional Expressivity Analysis

Number of parameters in the ansatz circuit should be
» large for solutions to be reachable
» large in order not to introduce artificial local optima

# small to reduce noise

« small for efficient use of many classical optimizers
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Dimensional Expressivity Analysis

Number of parameters in the ansatz circuit should be

large for solutions to be reachable

large in order not to introduce artificial local optima

small to reduce noise

« small for efficient use of many classical optimizers
Optimal circuit for VQE
« maximally expressive: be able to generate all (physically relevant) states

+ minimal: no unnecessary parametric gates

Can we develop a mathematical framework to determine if a circuit is both minimal and
maximally expressive?
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Dimensional Expressivity Analysis

e Parametric quantum circuit with parameters 6 € P C R" generating |C(f))

10) — Ry (61) — Rz(03) Ry (0s) — Rz(67)

|0) — Ry (62) — Rz(0a) —B— Ry (6s) — Rz(6s)

» Treat the parametric circuit as a map that maps the input parameters to the state
space of the quantum device
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Dimensional Expressivity Analysis

» The tangent space of M is spanned by the
tangent vectors |0;C(0))
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Dimensional Expressivity Analysis

* The tangent space of M is spanned by the
tangent vectors |0;C(0))

* 0y is redundant iff |8k_‘C(§’)) is a linear
combination of [0;C(0)), j # k
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Dimensional Expressivity Analysis

* The tangent space of M is spanned by the

tangent vectors |9; C(6))

—

* Oy is redundant iff |0, C(6)) is a linear
combination of [0;C(0)), j # k

Iterative procedure to identify redundant parameters
# 01 is never redundant as long as the corresponding parametric gate is nontrivial

» Check whether |0x1C(0)) is a linear combination of |01 C(0)), ..., |0k C(0))
* Remove redundant parameters




Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

* The tangent space of M is spanned by the

tangent vectors |9; C(6))

—

» 0y is redundant iff |0, C(0)) is a linear

=

combination of [0;C(0)), j # k

Iterative procedure to identify redundant parameters

# 01 is never redundant as long as the corresponding parametric gate is nontrivial

— = =

» Check whether |0x1C(0)) is a linear combination of |01 C(0)), ..., |0k C(0))
* Remove redundant parameters

» Parameter removal implies setting the parameter to a constant value
> Rotation gates (e.g. exp(—519X)): choose the parameter ¥ = 0 to achieve an 1




Dimensional Expressivity Analysis

Checking for parameter independence

® 01 is never redundant as long as corresponding parametric gate is nontrivial

e For Oy, k =2, ..., n repeat the following steps
» Since P is a real manifold, we have to consider the real Jacobian
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Dimensional Expressivity Analysis

+» Memory requirements on a classical computer: exponential in the number
of qubits N because Ji has dimensions 2V+1 x k




Dimensional Expressivity Analysis

Dimensional Expressivity Analysis

*» Memory requirements on a classical computer: exponential in the number
of qubits N because Jj has dimensions 2Vt1 x k

Can we use a hybrid-quantum classical approach for the Dimensonal Expressivity

Analysis?
0; o) [ Ryo)] 1 70| LA |
. : : :
110) — Ry (62) Ry (6s) :
- o) —{Ry (@) 7, (07)
Ho) —[R 00 {7, 09 :

Lena Funcke, Tobias Hartung, Karl Jansen, SK, Paolo Stornati, Quantum 5, 422 (2021)
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Hybrid Quantum-Classical Dimensional Expressivity Analysis
» Since the first parameter is always nontrivial S; = le
e For k > 2 the k X k matrices Sy = JkTJk can be cast into the form

R <al C(o*)‘akqe*)>

Sk = (5"—1 ﬁ") with A, =

S
Ac 1

R (k-1 C(0) |04 C(6)




Dimensional Expressivity Analysis

Hybrid Quantum-Classical Dimensional Expressivity Analysis
» Since the first parameter is always nontrivial S; = le
e For k > 2 the k x k matrices Sy = JkTJk can be cast into the form

R <al C(§)‘8kC(5)>

Sk = (5"—1 ﬁ“) with A, =

S
Ac 1

R <ak_1 C(é’)‘ak C(§)>
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Hybrid quantum-classical Dimensional Expressivity Analysis

» If we can efficiently obtain §R<(9JC(§)|8kC(5)) on the quantum device, we can
carry out dimensional expressivity analysis efficiently
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Hybrid quantum-classical Dimensional Expressivity Analysis

» If we can efficiently obtain §R<(9JC(§)|8kC(5)) on the quantum device, we can
carry out dimensional expressivity analysis efficiently

« Single-qubit example: [C(8)) = Rz(62)Rx(61)|0)

|0) — Rx(61) — Rz(62)




Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

» If we can efficiently obtain §R<<9JC(§)|8kC(§)) on the quantum device, we can
carry out dimensional expressivity analysis efficiently

« Single-qubit example: [C(8)) = Rz(62)Rx(61)|0)

|0) — Rx(61) — Rz(62)

« Circuit for obtaining R(81 C(8)|8,C(6))




Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis

» If we can efficiently obtain m@qé’)y@kc@) on the quantum device, we can
carry out dimensional expressivity analysis efficiently

=

» Single-qubit example: |C(0)) = Rz(02)Rx(61) |0)

|0) — Rx(61) — Rz(62)

« Circuit for obtaining R(81 C(8)|8,C(6))




Dimensional Expressivity Analysis

Results for a single qubit on quantum hardware
e Circuit we examine

C(b4,03,02,61) =
Ry (04)Rz(03)Rx (02)Rz(61) |0)

* Number of independent
parameters: 3




Dimensional Expressivity Analysis

Results for a single qubit on quantum hardware

e Circuit we examine e Spectrum of S, k> 2
25R e 2}  exo
C(04,03,02,61) = 0.2F (a) e 0.2 _"'},,A) *.%0
Ry (04)Rz(03)Rx(02)Rz(61) [0) = ik A o RN
* Number of independent e il)mq_ourc:lic] 88 00 _[il)mq_santiago AFA
| 4

2 3

parameters: 3 B B




Dimensional Expressivity Analysis

Results for two qubits on quantum hardware

e Circuit we examine
10) — Ry (61) — Rz(03) Ry (05) — Rz(67)

10) — Ry (02) — Rz(0a)
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Dimensional Expressivity Analysis

Summary

» Allows for optimizing a given circuit by identifying and removing redundant
parameters

» Makes it possible to remove unwanted symmetries as well

« Can be efficiently performed using a hybrid quantum-classical approach
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Noise on current quantum devices
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Measurement Error Mitigation

Noise on current quantum devices
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Measurement Error Mitigation

Measurement Error Mitigation

» Focus on a simple low-overhead, resource-efficient mitigation scheme suitable
even for small devices

* Assumptions:

» Only measurement errors, no other sources of noise
» Uncorrelated bit flips, readout errors are not correlated between qubits
» Bit flips occur with constant flip probability for each qubit




Measurement Error Mitigation

Measurement Error Mitigation
» Focus on a simple low-overhead, resource-efficient mitigation scheme suitable
even for small devices
* Assumptions:

» Only measurement errors, no other sources of noise
» Uncorrelated bit flips, readout errors are not correlated between qubits
» Bit flips occur with constant flip probability for each qubit

« Idea: construct random operators O such that such the expectation value subject




Measurement Error Mitigation

Single-qubit example
» Consider a single qubit with flip probabilities 0 2,1, 1 2 0 and measure the

1 0
Z = <0 _1) operator

Readout | Bit Flips | Probability | Noisy operator

correct |0—>0,1—>1|(1—p0)(1—p1)| Z=7
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Single-qubit example
» Consider a single qubit with flip probabilities 0 2,1, 1 2 0 and measure the

1 0
Z = <0 _1) operator

Readout | Bit Flips | Probability | Noisy operator
correct 0—-0,1—=1]|(1—p)(l—p) Z=7
incorrect 0—+1,1—=0 Pop1 Z=-7

0 outcome incorrect | 0 — 1,1 —1 po(1l — p1) Z=-1
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Single-qubit example
» Consider a single qubit with flip probabilities 0 2,1, 1 2 0 and measure the

1 0
Z = <0 _1) operator

Readout | Bit Flips | Probability | Noisy operator
correct 0—-0,1—=1]|(1—p)(l—p) Z=7
incorrect 0—+1,1—=0 Pop1 Z=-7

0 outcome incorrect | 0 — 1,1 —1 po(1l — p1) Z=-1

1 outcome incorrect | 0 -+ 0,1 — 0 (1= po)p1 Z=1




Measurement Error Mitigation

Single-qubit example
» Consider a single qubit with flip probabilities 0 2,1, 1 2 0 and measure the

1 0
Z = <0 _1) operator

Readout | Bit Flips | Probability | Noisy operator
correct 0—-0,1—=1]|(1—p)(l—p) Z=7
incorrect 0—+1,1—=0 Pop1 Z=-7

0 outcome incorrect | 0 — 1,1 —1 po(1l — p1) Z=-1

1 outcome incorrect | 0 -+ 0,1 — 0 (1= po)p1 Z=1




Measurement Error Mitigation

Single-qubit Example
» Expected value of the noisy operator

EZ=(1-po—p1)Z+(po—p1)L

» Reconstruction of the true expectation value

available from calibration on noisy q m device l l

1
1—po—p1

(W] Z|¢)



Measurement Error Mitigation

Single-qubit Example
» Expected value of the noisy operator

EZ=(1-po—p1)Z+(po—p1)L

» Reconstruction of the true expectation value

available from calibration on noisy q m device l l

1
1—po—p1

(W] Z|¢)



Measurement Error Mitigation

Generalization to multiple qubits and arbitrary operators
 General formula for Oy € {ik,Zk}

E<6N®"‘®61)= > T(On|On)On® -+ ®T(01|01)01
Oe{1,Z}®N

where




Measurement Error Mitigation

Two-qubit case, classical simulation

# Results for a classical simulation
with readout errors only

* Measure the expectation value of
Z ® Z for 1050 random parameter sets
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Measurement Error Mitigation

Two-qubit case, classical simulation

10°'EB imba_london _
- OOCU% o GDOO o}
# Results for a classical simulation L N, { -
with readout errors only r A% . T B
* Measure the expectation value of . i
Z ® Z for 1050 random parameter sets o 4040
* Monitor the average and standard 10_2:_ S




Measurement Error Mitigation

Two-qubit case, quantum hardware

1071

# Results for IBM quantum hardware

« Measure the expectation value of
Z ® Z for 1050 random parameter sets

* Monitor the average and standard
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Measurement Error Mitigation

Two-qubit case, quantum hardware

1071

# Results for IBM quantum hardware

« Measure the expectation value of
Z ® Z for 1050 random parameter sets

* Monitor the average and standard
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Measurement Error Mitigation

Summary
» For local Hamiltonians the overhead cost is polynomial
» It is possible to do a probabilistic version of the mitigation scheme

» The idea of constructing random operators is very general and can potentially be
applied to mitigate other kinds of errors
» Incorporate correlations between qubits
» Relaxation errors

> ..
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@ The Circuit Model of Quantum Computing

® Dimensional Expressivity Analysis




Summary & Outlook

Summary
» Noisy intermediate-scale quantum devices are available
* Hybrid-quantum classical algorithms are promising for these devices

» Dimensional Expressivity Analysis allows for designing minimal maximally
expressive circuits for these applications

* Measurement/readout errors can be efficiently mitigated with low overhead




Summary & Outlook

Summary

Noisy intermediate-scale quantum devices are available

Hybrid-quantum classical algorithms are promising for these devices

Dimensional Expressivity Analysis allows for designing minimal maximally
expressive circuits for these applications

Measurement/readout errors can be efficiently mitigated with low overhead

Outlook

» Generalize Dimensional Expressivity Analysis to be able to quantify the
approximation error of a given ansatz

» Extend the mitigation scheme to various other types of error

* Quantum hardware is advancing quickly



Thank you for your attention!




Appendix A: Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis
. §FE<8jC(§)‘8kC(§)> can be obtained on the quantum device




Appendix A: Dimensional Expressivity Analysis

Hybrid quantum-classical Dimensional Expressivity Analysis
. §FE<8J-C(§)‘8;<C(§)> can be obtained on the quantum device

» In general R (¢)|¢) can be measured using an ancilla qubit provided one can
prepare the state

1
) = 7 (10) ® |¢) + 1) ® |9))

* Applying a Hadamard gate on the ancilla one finds

1
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