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Computational materials modeling from first principles

Molecules

Crystals

Surfaces
Interfaces
Heterostructures

● Materials modeling is the use of 
mathematical models to describe 
materials properties.

● First-principles refers to a bottom-
up strategy that relies on Quantum 
Mechanics and is empirical free.

● Computational requires high-
performance computing (HPC) and 
highly-parallel codes for solving the 
Schrödinger equation. 
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Density functional Theory (DFT)

● DFT is the state-of-the-art tool used 
as a starting point to study the 
properties of many-body systems 
from functionals that depend on the 
electron density n(r).

● The premise of DFT is to start from an 
initial guess of n(r) and solve 
iteratively the Kohn-Sham equations 
(variant of the Schrödinger equation 
for electrons).

● Requires parallel computations that
depend on many planewave 
coefficients G (or orbital basis 
functions) and electron k states. The 
cost scales with the number of atoms.

“Statistical Data about Density Functional Calculations”
Mavropoulos P. and Dederichs P.

Cypriot Universities
 have to invest more on 

HPC and DFT
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Beyond DFT: Electron-phonon interactions for
quantum nuclear and temperature effects I

Phonon-assisted 
optical absorption
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Quantum nuclear dynamics in the photophysics of diamondoids
C. E. Patrick and F. Giustino, Nature Commun., 4, 2006, (2013)

Beyond DFT: Electron-phonon interactions for
quantum nuclear and temperature effects II

Phonon-assisted 
optical absorption
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Electron-phonon interaction: 
Quantum nuclear and temperature effects III 

Energy level renormalization /
T-dependent absorption onset

A. D. Wright, C. Verdi et al., Nat. Commun. 7, 11755 (2016)
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Electron-phonon coupling (EPC) from 
first principles: Some code developments

● Electron-phonon coupling strengths (λ)
● Superconducting properties
● Electron and phonons self energies
● Electron and phonon line-widths, -times
● T-dependent carrier lifetimes, mobilities

● T-dependent transport properties 
● Superconducting properties 
● T-dependent band structures within 

Allen-Heine theory: DW and SE terms 

EPC: Linear response 
Unitcell calculations

ZG-package

● Any T-dependent property that can be 
described by the Fermi-Golden rule

● Already implemented in VASP [1]

● New version in QE/EPW soon
 

EPC: Non-perturbative 
Supercell calculations

[1] https://www.vasp.at/wiki/index.php/Electron-phonon_interactions_from_Monte-Carlo_sampling

Harmonic  
Approximation
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Nonperturbative approaches Vs 
perturbative (linear response) approaches 

Perturbative (EPW)Nonperturbative (ZG) Differences

Perturbative

Nonperturbative

ZG gives the full spectrum → all terms in perturbation theory
ZG accounts for the T-dependent band structure
ZG requires supercells → EPW elegance of unitcell calculations
ZG misses non-adiabatic terms 

 [1] M. Zacharias and F. Giustino, Phys. Rev. Res. 2, 013357 (2020).   [2] J. Noffsinger, E. Kioupakis, et al., Phys. Rev. Lett. 108, 167402, (2012).                     

empirical shift 
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EPC using the special displacement method (SDM)
and the ZG configuration

M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125 (2016) and  Phys. Rev. Res. 2, 013357 (2020).

SDM: Gives the set of atomic displacements (ZG displacements) that best incorporate
 the effect of electron-phonon coupling in ab-initio calculations  

Special set of signs allocated by the code so that
                                   nonperturbative error is minimized
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EPC using the special displacement method (SDM)
and the ZG configuration. Physical meaning (I):

M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125 (2016) and  Phys. Rev. Res. 2, 013357 (2020).

SDM: Gives the set of atomic displacements (ZG displacements) that best incorporate
 the effect of electron-phonon coupling in ab-initio calculations  

exact
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EPC using the special displacement method (SDM)
and the ZG configuration. Physical meaning (ii):

M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125 (2016) and  Phys. Rev. Res. 2, 013357 (2020).

SDM: Gives the set of atomic displacements (ZG displacements) that best incorporate
 the effect of electron-phonon coupling in ab-initio calculations  

Perturbative

Pert
urba
tive

Pert
urba
tive

Exact - DFPT

Thermal Ellipsoids of MoS
2



  

Scattering structure factor map of black phosphorus:  
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Gives also exact phonon properties. Physical meaning (iii):

(1) (2)

H. Seiler: arXiv:2006.12873, (2020)
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Some applications of SDM (i)

 M. Zacharias and F. Giustino, Phys. Rev. Res. 2, 013357 (2020).

Full temperature-dependent 
 band structures using the 

band structure unfolding technique
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Some applications of SDM (i)

 M. Zacharias and F. Giustino, Phys. Rev. Res. 2, 013357 (2020).

Full temperature-dependent 
 band structures using the 

band structure unfolding technique

                         2D MoS
2
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Some applications of SDM (ii)

[1] M. Zacharias and F. Giustino, Phys. Rev. B 94, 075125 (2016)
[2] F. Karsai, M. Engel, G. Kresse, E. Flage-Larsen, New J. Phys. 20 123008 (2018).
[3] M. Palsgaard, T. Markussen, T. Gunst, M. Brandbyge, K. Stokbro, Phys. Rev. Appl. 10, 014026 (2018).
[4] F. Karsai, M. Humer, E. Flage-Larsen, P. Blaha, G. Kresse, Phys. Rev. B 98, 235205 (2018).

T-dependent optical absorption of GaAs and C [1] Zero-point renormalization with GW [2] 

Phonon-Assisted Photocurrent in Large Solar-Cell Devices [3] 

Exciton-phonon coupling in hexagonal BN [4]
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Input file

q-list, commensurate to supercell,
points in sets A and B



  

ZG values get 
closer to the exact
values by decreasing
“error_thresh” flag
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Output files

● ZG_configuration_XXX.dat
● ZG_velocities_XXX.dat
● equil_pos_XXX.dat
● single_phonon-displacements.dat 

By setting “single_phonon_displ = .true.”

Where XXX is the supercell size 
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Example: zero-point renormalization using the JDOS

→ 5x5x5 ZG-configuration 
of Si at 0K

→ Zero-point renormalization 
very close to converged 
value of 57 meV



  19

T-dependent PL peak energy from experiments:  free standing (FS)
 and matrix embedded (ME) silicon nanocrystals (SiNCs) 

K. Kůsová, et al. Appl. Phys. Lett. 101, 143101 (2012).

 FS SiNCs 

Interpretation ignores the effect of electron-phonon coupling 



  20

T-dependent band gap of SiNCs using SDM

Marios Zacharias and Pantelis C. Kelires, Phys. Rev. B 101, 245122 (2020).
Calculations were performed using Cy-tera HPC system of CaSToRC

Homo – Lumo Gap
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Phonon density of states and Eliashberg 
function of SiNCs by finite differences

Phonon-density of states 

Marios Zacharias and Pantelis C. Kelires, Phys. Rev. B 101, 245122 (2020).
Calculations were performed using Cy-tera HPC system of CaSToRC
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Nonperturbative stAVIC approach to the 
T-dependent band gap of perovskites: cubic SrTiO

3

M. Zacharias, M. Scheffler, C. Carbogno, Phys. Rev. B102, 045126 (2020)

 SrTiO
3

● Anharmonic material featuring soft 
modes in the harmonic approximation 

● Exceptional high-T applications
● Thermoelectric waste-heat recovery
● Optical gas sensing
● Solid oxide fuel cells

● Tetragonal up to 105 K and 
Cubic up to 2300 K. 
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Nonperturbative stAVIC approach: 
Band structure unfolding using numeric atom-centered orbitals

M. Zacharias, M. Scheffler, C. Carbogno, Phys. Rev. B102, 045126 (2020)
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Nonperturbative stAVIC approach: 
Band structure unfolding using numeric atom-centered orbitals

M. Zacharias, M. Scheffler, C. Carbogno, Phys. Rev. B102, 045126 (2020)

 SDM  aiMD  aiMD SDM

Molecular Dynamics for anharmonic effects:    1) (N,V,T) ensemble and PBE-vdW (TS method)
                                                                         2)  5x5x5 supercell
                                                                         3) Average of 30 uncorrelated configurations
                                                                         4) Thermal lattice expansion is included from ab-initio

Momentum-resolved spectral functions:
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Nonperturbative stAVIC approach: 
Band gap renormalization including anharmonic effects

M. Zacharias, M. Scheffler, C. Carbogno, Phys. Rev. B102, 045126 (2020)
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Nonperturbative stAVIC approach: 
Effective mass renormalization

M. Zacharias, M. Scheffler, C. Carbogno, Phys. Rev. B102, 045126 (2020)
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Nonperturbative stAVIC approach: 
Effective mass renormalization

M. Zacharias, M. Scheffler, C. Carbogno, Phys. Rev. B102, 045126 (2020)

In line with experimental measurements and 
can explain the decrease in the Hall mobility of SrTiO3
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