

Patterning of solids with the employment of ultrashort laser pulses

George D. Tsibidis IESL-FORTH

CaSToRC Seminar, 5/4/2021

Patterning of solids with the employment of <u>ultrashort</u> <u>laser pulses</u>

George D. Tsibidis IESL-FORTH

CaSToRC Seminar, 5/4/2021

Traditional light sources vs Laser

- Each color of light has a different wavelength.
- Our eyes see this mixture of wavelengths as white light.

Traditional light sources vs Laser

- Each color of light has a different wavelength.
- Our eyes see this mixture of wavelengths as white light.
- A laser is different.
- Lasers do not occur in nature.

- Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.
- Laser beams can travel very long distances. They can also concentrate a lot of energy on a very small area

Traditional light sources vs Laser

- Each color of light has a different wavelength.
- Our eyes see this mixture of wavelengths as white light.
- A laser is different.
- Lasers do not occur in nature.

- Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.
- Laser beams can travel very long distances. They can also concentrate a lot of energy on a very small area

Lasers can be used for changing the morphology of the irradiated solid

Characteristics of lasers

• Most laser beams have a Gaussian beam profile

$$\mathbf{E}(r,z) = E_0 \ \hat{\mathbf{x}} \ rac{w_0}{w(z)} \expigg(rac{-r^2}{w(z)^2}igg) \expigg(-i\left(kz
ight)igg) \qquad I(r,z) = I_0igg(rac{w_0}{w(z)}igg)^2 \expigg(rac{-2r^2}{w(z)^2}igg)$$

Characteristics of lasers

• Most laser beams have a Gaussian beam profile

$$\mathbf{E}(r,z) = E_0 \ \hat{\mathbf{x}} \ rac{w_0}{w(z)} \expigg(rac{-r^2}{w(z)^2}igg) \expigg(-i \left(kz \ igg)igg) \qquad I(r,z) = I_0 igg(rac{w_0}{w(z)}igg)^2 \expigg(rac{-2r^2}{w(z)^2}igg)$$

• Use of laser pulses of certain duration (for example, by modulating a continuous-wave light source)

$$I(r,z) \times \exp\left(-4\log(2)\left(\frac{t}{\tau_{p}}\right)^{2}\right)$$

Fs vs longer laser pulses

Pulse duration

τ_p :pulse duration

Femto-second=10⁻¹⁵ sec Pico- second=10⁻¹² sec Nano- second=10⁻⁹ sec

Chichkov *et* al, *Appl.Phys.A*. **63**, 109 (1996)

Fs vs longer laser pulses

 τ_p :pulse duration

Impact of Laser Technology on Industrial Applications

Global Laser Technology market, by Region

Impact of Laser Technology on Industrial Applications

Global Laser Technology market, by Region

North America Europe Asia-Pacific Middle East & Africa South America

Particle Acceleration ultrahigh electric field gradients

- Table-top GeV electron accelerators
- MeV ion sources for imaging
- Isotope production
- Hadron tumor therapy . Proton-based fast
- ignition

Secondary Radiation Son generation of particle & photor

- High power THz general
- Extreme ultraviolet lithography
- . Biological soft x-ray microscopy
- Non-destructive evaluation
- Medical imaging/therapy

Accel	USP	B Stabilized, o
2.5	Lasers	• Ultra-s
		Arb wa
R	and the second s	 High p
004	Matence Matence	 Freque
	Propagation 60	 Ultra-w
	In Media	 Cohere
		 Optica
		 Calibra
urces ns	Propagation in media self-channeling	Material Scie ultrashort, high j
ation	 Remote sensing 	Surgery
	 Remote tagging 	 Chemical a
	 Directed energy 	 Surface pre

Electronic warfare

Advanced sonar

Countermeasures

- ultra-wide bandwidth
- table freq sources
- aveform generation
- recision spectroscopy
- ency/time transfer
- videband comms ent LIDAR
- I clocks ation

nce peak power

- analysis (LIBS) Surface property
- modification
- Non-equilibrium ablation
- Micromachining
- Ultrafast photochemistry
- Attochemistry

Impact of Laser Technology on Industrial Applications

Global Laser Technology market, by Region

North America Europe Asia-Pacific Middle East & Africa South America

Particle Acceleration ultrahigh electric field gradients

- Table-top GeV electron accelerators
- MeV ion sources for imaging
- Isotope production
- Hadron tumor therapy
 Proton-based fast ignition

Secondary Radiation Sources

- High power THz generation
- Extreme ultraviolet lithography
- Biological soft x-ray microscopy
- Non-destructive evaluation
- Medical imaging/therapy

Accumum	USP Lasers Propagation In Media	Metrology stabilized, ultra-wide bandwidth Ultra-stable freq sources Arb waveform generation High precision spectroscopy Frequency/time transfer Ultra-wideband comms Coherent LIDAR Optical clocks Calibration
Sources tons	Propagation in media self-channeling	Material Science ultrashort, high peak power
eration uation apy	 Remote sensing Remote tagging Directed energy Electronic warfare Countermeasures Advanced sonar 	 Surgery Chemical analysis (LIBS) Surface property modification Non-equilibrium ablation Micromachining Ultrafast photochemistry

Attochemistry

The Nobel Prize in Physics 2018 was awarded.....to Gerard Mourou and Donna Strickland 'for their method of generating high-intensity <u>ultrashort optical pulses</u>"

Impact of Laser Technology on Industrial Applications

Global Laser Technology market, by Region

North America Europe Asia-Pacific Middle East & Africa South America

Particle Acceleration ultrahigh electric field gradients

- Table-top GeV electron accelerators
- MeV ion sources for imaging
- Isotope production
- · Hadron tumor therapy
- Proton-based fast ignition

Secondary Radiation Sources generation of particle & photons

- High power THz generation
- Extreme ultraviolet lithography
- Biological soft x-ray microscopy
- Non-destructive evaluation
- · Medical imaging/therapy

Accounting of the	USP Lasers Propagation Propagation Propagation	Metrology stabilized, ultra-wide bandwidth Ultra-stable freq sources Arb waveform generation High precision spectroscopy Frequency/time transfer Ultra-wideband comms Coherent LIDAR Optical clocks
		Calibration
Sources	Propagation in media self-channeling	Material Science ultrashort, high peak power
neration	 Remote sensing 	Surgery
	 Remote tagging 	 Chemical analysis (LIBS)
	 Directed energy 	 Surface property
	 Electronic warfare 	modification
	 Countermeasures 	 Non-equilibrium ablation
luation	 Advanced sonar 	 Micromachining
erapy		 Ultrafast photochemistry
		 Attochemistry

The Nobel Prize in Physics 2018 was awarded.....to Gerard Mourou and Donna Strickland 'for their method of generating high-intensity <u>ultrashort optical pulses</u>"

Sky is the limit but...the inspiration comes mostly from the ground

Leaf Wetting properties

Lizards/Bugs Integument Directional Fluid Transport

Shark Skin Low Underwater Friction

Greta-Oto Scales Antireflection

Colocasia Leaf Superhydrophobicity Water Repellence Self Cleaning

Si

Phys.Rev.B **92**, 041405 (2015) *Phys.Rev.B* **86**, 115316 (2012)

100Cr6 Applied Physics A 124:27 (2018)

Surface modification after irradiation with ultrashort-pulsed lasers

SiO₂

Phys.Rev.B 94, 081305, (2016)

Antireflective properties

Adv. Mater. 1901123 (2019)

Ni (vector polarisation/scanning)

Scientific Reports 7, 45114 (2017)

Ni (vector polarisation) Optics Letters **40**, 5172 (2015) J.App.Phys. **121**, 163106 (2017)

Laser-fabricated

surfaces

Bonse at al., IEEE J.Sel.Topics in Quant. Electr. 23, 3, (2017)

Laser-fabricated

surfaces

Bonse at al., IEEE J.Sel.Topics in Quant. Electr. 23, 3, (2017)

Number of pulses and Fluence

Laser-fabricated <u>self-organized</u> biomimetic surfaces

<u>Self-organisation</u>: the surface is irradiated using a homogeneous spatial beam profile in a spot or scanning geometry but the resulting surface topography features characteristic (quasi-)periodic surface morphologies.

Bonse at al., IEEE J.Sel.Topics in Quant. Electr. 23, 3, (2017)

Number of pulses and Fluence

Applications of laser-fabricated <u>self-organized</u> biomimetic surfaces

<u>Self-organisation</u>: the surface is irradiated using a homogeneous spatial beam profile in a spot or scanning geometry but the resulting surface topography features characteristic (quasi-)periodic surface morphologies.

HSFL LSFL Grooves Spikes Number of pulses and Fluence

Applications of laser-fabricated <u>self-organized</u> biomimetic surfaces

HSFL

<u>Self-organisation</u>: the surface is irradiated using a homogeneous spatial beam profile in a spot or scanning geometry but the resulting surface topography features characteristic (quasi-)periodic surface morphologies.

Stratakis E. et al, Mat. Science & Eng. R 141, 100562 (2020)

Number of pulses and Fluence

Grooves

LSFL

Spikes

Critical parameters that influence surface morphology

- Fluence
- Number of pulses (energy dose)
- Laser wavelength
- Laser polarisation
- Angle of Incidence
- Crystal orientation
- Pulse duration
- Material
- Thickness of material
- Temporal separation between pulses
- Shape of beam (i.e. Gaussian, etc.)

Critical parameters that influence surface morphology

- Fluence
- <u>Number of pulses (energy dose)</u>
- Laser wavelength
- Laser polarisation
- Angle of Incidence
- Crystal orientation
- Pulse duration
- Material
- Thickness of material
- Temporal separation between pulses
- Shape of beam (i.e. Gaussian, etc.)

Outline of the talk

- Multiscale physical processes following irradiation of solids with ultrashort pulses
 - > Semiconductors
- Do we need additional processes to explain surface modification?
 - Hydrodynamical effects
 - Elastic effects
- Surface patterning through spatially varying intensity profiles
 Direct Laser Interfering Pattern techniques
- Challenges
- Concluding Remarks

Irradiation of solids with fs pulses

Tsibidis et al, Phy.Rev.B 101, 075207 (2020)

Effect of laser irradiation of semiconductors

The laser-matter interaction involves four regimes

The laser-matter interaction involves four regimes

1. Carrier excitation

Sundaram SK and Mazur. E., Nature Materials, B 86, 1,217(2002)

The laser-matter interaction involves four regimes

2. Thermalisation

Sundaram SK and Mazur. E., *Nature Materials*, B 86, 1,217(2002)

- *e-e* and *e-ph* scattering occur concurrently during the first few hundreds fs
- *e-ph* thermalization ends after a few ps

The laser-matter interaction involves four regimes

3. Carrier removal

The laser-matter interaction involves four regimes

4. Thermal and structural effects

Sundaram SK and Mazur. E., Nature Materials, B 86, 1,217(2002)

Theoretical Model (Semiconductors) ulu +n

Fs vs longer laser pulses

Chichkov et al, Appl.Phys.A. 63, 109 (1996)

Fs vs longer laser pulses

Missing link from the multiscale physics model

Missing link from the multiscale physics model

Blending relaxation processes with Fluid dynamics

Molten material dynamics/fluid transport (Hydrodynamics) for incompressible fluid (i.e. $\vec{\nabla} \cdot \vec{u} = 0$)

$$\rho_0\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u}\right) = \vec{\nabla} \cdot \left(-P + \mu \left(\vec{\nabla} \vec{u}\right) + \mu \left(\vec{\nabla} \vec{u}\right)^T\right)$$

: Navier Stokes equations

- P: Total pressure: surface tension +Recoil Pressure
- \vec{u} : velocity of fluid
- μ : viscosity

$$P_{r} = 0.54P_{0}exp\left(L_{v}\frac{T_{L}^{(S)}-T_{boiling}}{R_{G}T_{L}^{(S)}T_{boiling}}\right)$$

 ρ_0 : density

Surface patterning and electrodynamical effects (what is the role?)

Surface patterning and electrodynamical effects

EM effects

Our Model for 'Ripples' formation + ***

Introduction of Periodic Energy Deposition (due to interference of the incident

beam with SPP) into Hydrodynamics

Modules of the model

Si, 200 fs, λ=800 nm, F = 0.3 J/cm²

- Electrodynamics: SP excitation
 + interference with incident beam.
- Heat transfer: carrier-lattice thermalisation and heat conduction.
- Hydrodynamics: N related effects.
- Marangoni
- ♦ Resolidification.

 \diamond

Advantages of the model

- \diamond Multiscale description.
- Coupling of EM with hydrodynamical phenomena.

 Surface plasmon wave excitation (Electrodynamics)

2. Carrier-lattice relaxation process and heat transfer

$$\begin{split} C_c \frac{\partial T_c}{\partial t} &= \vec{\nabla} \cdot ((k_e + k_h) \vec{\nabla} T_c) - \frac{C_c}{\tau_e} (T_c - T_l) + S(\vec{r}, t), \\ C_l \frac{\partial T_l}{\partial t} &= \vec{\nabla} \cdot (K_l \vec{\nabla} T_l) + \frac{C_c}{\tau_e} (T_c - T_l), \\ \frac{\partial N}{\partial t} &= \frac{\alpha}{h\nu} \Omega I(\vec{r}, t) + \frac{\beta}{2h\nu} \Omega^2 I^2(\vec{r}, t) - \gamma N^3 + \theta N - \vec{\nabla} \cdot \vec{J} \\ \Omega &= \frac{1 - R(T_l)}{\cos \varphi}. \end{split}$$

¹⁰ ³ 3. Molten material dynamics/fluid transport (Hydrodynamics) $\rho_L^{(m)} \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u} \right) = \vec{\nabla} \cdot \left(-P\mathbf{1} + \mu \left(\vec{\nabla} \vec{u} \right) + \mu \left(\vec{\nabla} \vec{u} \right)^T \right)$ Simulation

Our Model for 'Ripples' formation

Introduction of Periodic Energy Deposition (due to interference of the incident

beam with SPP) into Hydrodynamics

Si, 200 fs, λ =800 nm, F = 0.3 J/cm²

Modules of the model

- Electrodynamics: SP excitation interference with incident beam.
- \diamond Heat transfer: carrier-lattice thermalisation and conduction. \rightarrow Hydrodynamics:
 - heat Marangoni
- related effects. Resolidification.

 \diamond

Advantages of the model

- \diamond Multiscale description.
- Coupling of EM with hydrodynamical phenomena.

E,

- **LSFL**
- Surface plasmon wave excitation 1. (Electrodynamics)

Carrier-lattice relaxation process and heat transfer

$$\begin{split} C_c \frac{\partial T_c}{\partial t} &= \vec{\nabla} \cdot ((k_e + k_h) \vec{\nabla} T_c) - \frac{C_c}{\tau_e} (T_c - T_l) + S(\vec{r}, t), \\ C_l \frac{\partial T_l}{\partial t} &= \vec{\nabla} \cdot (K_l \vec{\nabla} T_l) + \frac{C_c}{\tau_e} (T_c - T_l), \\ \frac{\partial N}{\partial t} &= \frac{\alpha}{h\nu} \Omega I(\vec{r}, t) + \frac{\beta}{2h\nu} \Omega^2 I^2(\vec{r}, t) - \gamma N^3 + \theta N - \vec{\nabla} \cdot \vec{J} \\ \Omega &= \frac{1 - R(T_l)}{\cos \varphi}. \end{split}$$

Molten material dynamics/fluid 3. transport (Hydrodynamics) $\rho_L^{(m)} \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u} \right) = \vec{\nabla} \cdot \left(-P\mathbf{1} + \mu \left(\vec{\nabla} \vec{u} \right) + \mu \left(\vec{\nabla} \vec{u} \right)^T \right)$ Simulation

Our Model for 'Ripples' formation

Introduction of Periodic Energy Deposition (due to interference of the incident

beam with SPP) into Hydrodynamics

Modules of the model

- Electrodynamics: SP excitation interference with incident beam.
- ♦ Heat transfer: carrier-lattice thermalisation and conduction.
- \rightarrow Hydrodynamics: related effects.
- Marangoni

heat

Resolidification.

 \diamond

Advantages of the model

- Multiscale description.
- of with Coupling ΕM hydrodynamical phenomena.

Ε,

LSFL

12 -300 200 8 Depth (nm)

10

Simulation

Surface plasmon excitation?

For approximately flat surface

$$\varepsilon' = \varepsilon_{un} - \frac{e_c^2 N_c}{m_r m_e \varepsilon_0 \omega_L^2} \frac{1}{\left(1 + i \frac{1}{\omega_L \tau_c}\right)}$$

Tsibidis GD et al., *Phys. Rev. B* **86**, 115316 (2012) Tsibidis GD et al., *Appl. Phys. A* **114**, 57 (2014) Margiolakis et al, *Phys. Rev. B* **98**, 224103 (2018) Huang et al., ACS Nano, **3** (12) 4062 (2019) Tsibidis GD et al., *J. App.Phys.* **121**, 163106 (2017)

Our Model for 'Ripples-Groove' formation

Introduction of Periodic Energy Deposition (due to interference of the incident beam with SPP) into Hydrodynamics Grooves

Modules of the model

Si, 200 fs, λ =800 nm, F = 0.3 J/cm²

- Electrodynamics: SP excitation interference with incident + beam.
- ♦ Heat transfer: carrier-lattice thermalisation and conduction. \rightarrow Hydrodynamics:
 - Marangoni

heat

At moderately higher fluences or larger number of pulses

 \diamond Resolidification.

related effects.

Advantages of the model

- \diamond Multiscale description.
- ♦ Coupling of EM with hydrodynamical phenomena.

Our Model for 'Ripples-Groove' formation

Introduction of Periodic Energy Deposition (due to interference of the incident beam with SPP) into Hydrodynamics Grooves

Modules of the model

Si, 200 fs, λ =800 nm, F = 0.3 J/cm²

- Electrodynamics: SP excitation interference with incident + beam.
- carrier-lattice \diamond Heat transfer: thermalisation and conduction. \rightarrow Hydrodynamics:
 - Marangoni

heat

At moderately higher fluences or larger number of pulses

 \diamond Resolidification.

related effects.

Advantages of the model

- \diamond Multiscale description.
- of ♦ Coupling EM with hydrodynamical phenomena.

Lava movement Cloud movement Mega Ripples on Mars

Our Model for 'Ripples-Groove' formation

Introduction of Periodic Energy Deposition (due to interference of the incident beam with SPP) into Hydrodynamics Grooves

Modules of the model

- Electrodynamics: SP excitation interference with incident + beam.
- ♦ Heat transfer: carrier-lattice thermalisation and conduction.
- \rightarrow Hydrodynamics: related effects.
 - Marangoni

heat

Resolidification.

Advantages of the model

- Multiscale description.
- Coupling of ΕM \diamond with hydrodynamical phenomena.
- \rightarrow Transition from ripples to grooves.

Si, 200 fs, λ =800 nm, F = 0.3 J/cm²

Simulation

Tsibidis GD et al., Phys. Rev. B (Rapid Comms) 92, 041405 (2015) Tsibidis GD et al., Phys. Rev. B (Rapid Comms) 94, 081305 (2016)

Surface patterns for excitation at different wavelengths

Ν

Applied Surface Science **528** 146607 (2020)

Our Model for 'Ripples-Groove-Spike' formation

Introduction of Periodic Energy Deposition (due to interference of the incident beam with SPP) into Hydrodynamics

Modules of the model

Si, 200 fs, λ =800 nm, F = 0.3 J/cm²

- Electrodynamics: SP excitation
 + interference with incident beam.
- Heat transfer: carrier-lattice thermalisation and heat conduction.
- Hydrodynamics: related effects.
- Marangoni
- At even higher fluences or even larger number of pulses

♦ Resolidification.

Advantages of the model

- \diamond Multiscale description.
- Coupling of EM with hydrodynamical phenomena.

Tsibidis GD et al., *Phys. Rev. B (Rapid Comms)* **92**, 041405 (2015) Tsibidis GD et al., *Phys. Rev. B (Rapid Comms)* **94**, 081305 (2016)

Our Model for 'Ripples-Groove-Spike' formation

Introduction of Periodic Energy Deposition (due to interference of the incident beam with SPP) into Hydrodynamics

Modules of the model

Si, 200 fs, λ=800 nm, F = 0.3 J/cm²

- Electrodynamics: SP excitation
 + interference with incident beam.
- Heat transfer: carrier-lattice thermalisation and heat conduction.
- Hydrodynamics: Marangoni related effects.
- ♦ Resolidification.

Advantages of the model

- \diamond Multiscale description.
- Coupling of EM with hydrodynamical phenomena.
- Transition from ripples to grooves and spikes.

Tsibidis GD et al., *Phys. Rev. B (Rapid Comms)* **92**, 041405 (2015) Tsibidis GD et al., *Phys. Rev. B (Rapid Comms)* **94**, 081305 (2016)

Si Steel-100Cr6 SiO2 SiO2 SiO2

Tsibidis GD et al., *Phys. Rev. B (Rapid Comms)* **92**, 041405 (2015) Tsibidis GD et al., *Phys. Rev. B (Rapid Comms)* **94**, 081305 (2016) Tsibidis GD et al., *Applied Physics A* **124**, 27 (2018)

WD 25.3mm

10µm

15.0kV

X900

Energy Balance + Hydrodynamics + Elasticity

$$C_{e} \frac{\partial T_{e}}{\partial t} = \vec{\nabla} \cdot (\kappa_{e} \vec{\nabla} T_{e}) - g(T_{e} - T_{L}) + S(\vec{r}, t)$$

$$C_{L} \frac{\partial T_{L}}{\partial t} = g(T_{e} - T_{L}) - (3\lambda_{Ni} + 2\mu)\alpha' T_{L} \sum_{i=1}^{3} \dot{\varepsilon}_{ii}$$
Energy balance
$$C_{L} \left(\frac{\partial T_{L}}{\partial t} + \vec{\nabla} \cdot (\vec{u} T_{L})\right) - L_{m} \delta(T_{L} - T_{melt}) \frac{\partial T_{L}}{\partial t} = \vec{\nabla} \cdot (\kappa_{L} \vec{\nabla} T_{L})$$

$$\rho_{L}^{(m)} \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \vec{\nabla} \vec{u}\right) = \vec{\nabla} \cdot (-P + \mu^{(m)} (\vec{\nabla} \vec{u}) + \mu^{(m)} (\vec{\nabla} \vec{u})^{T})$$
Fluid dynamics
$$\rho_{L}^{(i)} \frac{\partial^{2} V_{i}}{\partial t^{2}} = \sum_{j=1}^{3} \frac{\partial \sigma_{ji}}{\partial x^{j}}, \quad i, j = 1, 2, 3$$

$$\sigma_{ij} = 2\mu \varepsilon_{ij} + \lambda_{Ni} \sum_{k=1}^{3} \varepsilon_{kk} \delta_{ij} - \delta_{ij} (3\lambda_{Ni} + 2\mu)\alpha' (T_{L} - 300)$$
Elasticity
$$\varepsilon_{ij} = 1/2 \left(\frac{\partial V_{i}}{\partial x^{j}} + \frac{\partial V_{j}}{\partial x^{j}}\right),$$

Tsibidis GD et al *Optics Letters* **40**, 5172 (2015) Tsibidis GD et al *J.Appl.Phys.* **111**, 053502 (2012)

Thermal response in RP and Surface modification

Tsibidis GD et al *Optics Letters* **40**, 5172 (2015) Tsibidis GD et al *J.Appl.Phys.* **111**, 053502 (2012) Tsibidis GD et al *J.Appl.Phys.* **121**, 163106 (2017)

Thermal response in RP and Surface modification

Tsibidis GD et al *J.Appl.Phys.* **111**, 053502 (2012) Tsibidis GD et al *J.Appl.Phys.* **121**, 163106 (2017)

Direct laser Interference patterning (DLIP) Wettability polycarbonate

Stainless steel

Antibacterial

Alamri et al, European Polymer Journal, 99, 27 (2018)

Rosenkranz et al, Lubricants 4, 2 (2016)

Resulting interference pattern

$$\vec{E}_{total}(z_s) = \sum_{n=1}^{N} \vec{E}_{n0} e^{-i(\omega t - \vec{k} \cdot \vec{r})} = \sum_{n=1}^{N} \vec{E}_{n0} e^{-i(\omega t - 2\pi/\lambda_L \sin(\theta_n/2)[x\cos(\beta_n) + y\sin(\beta_n)]}$$

$$\begin{split} I_0^{(2)} &= I_1[1 + \cos(2kx\sin\theta)] \\ I_0^{(4)} &= I_1\left\{ \left[1 + \frac{1}{2}\cos(2kx\sin\theta) + \frac{1}{2}\cos(2ky\sin\theta) + 2\cos(kx\sin\theta)\cos(ky\sin\theta)\right] \right\} \end{split}$$

Fraggelakis F et al, Physical Review B 103, 054105 (2021)

Fraggelakis F et al, Physical Review B 103, 054105 (2021) (Experiments performed from F.Fraggelakis)

Fraggelakis F et al, Physical Review B 103, 054105 (2021)

(Experiments performed from F.Fraggelakis)

Depth [µm]

Fraggelakis F et al, Physical Review B **103**, 054105 (2021)

(Experiments performed from F.Fraggelakis)

FORTH Order of irradiation schemes leads to different patterns $\overset{\mu\mu+n}{\checkmark}$

- Gaussian beams→LIPSS (horizontal)
- The second pulse (D) drives the melt flow in both directions the x-y-axes before solidification by enhancing locally and in places of the LIPSS period the hyrodynamical movement

Fraggelakis et al, Opto-Electronic Advances, 5, 210052 (2022)

$\frac{u_{\mu} + n}{0}$ Order of irradiation schemes leads to different patterns

• The first pulse (D) drives the melt flow in both directions the x-yaxes before solidification by enhancing locally and in places of the LIPSS period the hyrodynamical movement

• The Gaussian beams→LIPSS (horizontal)

Fraggelakis et al, Opto-Electronic Advances, 5, 210052 (2022)

Sky is the limit but...the inspiration comes mostly from the ground

Leaf Wetting properties

Lizards/Bugs Integument Directional Fluid Transport

Shark Skin Low Underwater Friction

Greta-Oto Scales Antireflection

Colocasia Leaf Superhydrophobicity Water Repellence Self Cleaning

Extension of the multiscale physics model

New directions: XUV, Thin films, Topography changes due to the use of more complex polarization schemes

Conclusions-Challenges-Prospects

- Knowledge of fundamental knowledge is very important towards controlling and modulating surface patterning
- Differences in surface patterns demonstrate the significant role of a number of parameters and certainly polarization, material, hydrodynamics are among the most dominant
- LIPSS at larger photon energies (XUV?) or very small pulse durations
- LIPSS and fluid dynamics on thin films or multilayered materials

Conclusions-Challenges-Prospects

- Knowledge of fundamental knowledge is very important towards controlling and modulating surface patterning
- Differences in surface patterns demonstrate the significant role of a number of parameters and certainly polarization, material, hydrodynamics are among the most dominant
- LIPSS at larger photon energies (XUV?) or very small pulse durations
- LIPSS and fluid dynamics on thin films or multilayered materials

Acknowledgements

Collaborators [at IESL-FORTH (ULMNP Group)]

- Stratakis E. (Head of ULMNP Group)
- Fraggelakis F.
- P.Lingos
- Mouchliadis L.
- Maragkaki S.
- Vlahou M.
- Velli M.C.
- Skoulas E.
- Mimidis A

Other local Collaborators (past and present)

- Pantazis Y. (IACM-FORTH)
- Loukakos P. (IESL-FORTH)
- Pissadakis S. (IESL-FORTH)
- Tsilipakos O. (IESL-FORTH)
- Kafesaki M. Group (UoC and IESL-FORTH)
- Fotakis C. (IESL-FORTH)

International Collaborators

- Kanaev A. (CNRS and Univ. de Paris)
- Museur L. (CNRS and Univ. de Paris)
- Amoruso S. (Univ. di Napoli, Italy)
- Bonse J. (BAM, Germany)
- Uteza O. (CNRS and Univ. of Marseille)
- A.Kabashin (CNRS and Univ. of Marseille)
- ELI-ALPS (Exp. And Th. Groups)

Thank you for your attention